Learn More
Francisella tularensis causes systemic disease in humans and other mammals, with high morbidity and mortality associated with inhalation-acquired infection. F. tularensis is a facultative intracellular pathogen, but the scope and significance of cell types infected during disease is unknown. Using flow cytometry, we identified and quantified infected-cell(More)
Francisella tularensis is a highly virulent bacterial pathogen that invades and replicates within numerous host cell types, including macrophages and epithelial cells. In an effort to better understand this process, we screened a transposon insertion library of the F. tularensis live vaccine strain (LVS) for mutant strains that invaded but failed to(More)
Francisella tularensis replicates in macrophages and dendritic cells, but interactions with other cell types have not been well described. F. tularensis LVS invaded and replicated within alveolar epithelial cell lines. Following intranasal inoculation of C57BL/6 mice, Francisella localized to the alveolus and replicated within alveolar type II epithelial(More)
Francisella tularensis is a highly virulent zoonotic bacterial pathogen capable of infecting numerous different mammalian species, including humans. Elucidation of the pathogenic mechanisms of F. tularensis has been hampered by a lack of tools to genetically manipulate this organism. Herein we describe the use of transposome complexes to create insertion(More)
Francisella tularensis, a gram-negative facultative intracellular bacterial pathogen, causes disseminating infections in humans and other mammalian hosts. Macrophages and other monocytes have long been considered the primary site of F. tularensis replication in infected animals. However, recently it was reported that F. tularensis also invades and(More)
The highly pathogenic Yersinia enterocolitica strains have a chromosomally encoded type III secretion system (T3SS) that is expressed and functional in vitro only when the bacteria are cultured at 26 °C. Mutations that render this system nonfunctional are slightly attenuated in the mouse model of infection only following an oral inoculation and only at(More)
Recruitment of immune cells to infection sites is a critical component of the host response to pathogens. This process is facilitated partly through interactions of chemokines with cognate receptors. Here, we examine the importance of fractalkine (CX3CL1) receptor, CX3CR1, which regulates function and trafficking of macrophages and dendritic cells, in the(More)
Many US biomedical PhD programs receive more applications for admissions than they can accept each year, necessitating a selective admissions process. Typical selection criteria include standardized test scores, undergraduate grade point average, letters of recommendation, a resume and/or personal statement highlighting relevant research or professional(More)
A national sample of PhD-trained scientists completed training, accepted subsequent employment in academic and nonacademic positions, and were queried about their previous graduate training and current employment. Respondents indicated factors contributing to their employment decision (e.g., working conditions, salary, job security). The data indicate the(More)
Certain racial and ethnic groups, individuals with disabilities, and those from low socioeconomic backgrounds remain underrepresented (UR) in the biomedical sciences. This underrepresentation becomes more extreme at each higher education stage. To support UR scholars during the critical transition from baccalaureate to PhD, we established an intensive, 1-yr(More)
  • 1