Joshua A. Granek

Learn More
We have developed a computational model that predicts the probability of transcription factor binding to any site in the genome. GOMER (generalizable occupancy model of expression regulation) calculates binding probabilities on the basis of position weight matrices, and incorporates the effects of cooperativity and competition by explicit calculation of(More)
Sequence motifs that are potentially recognized by DNA-binding proteins occur far more often in genomic DNA than do observed in vivo protein-DNA interactions. To determine how chromatin influences the utilization of particular DNA-binding sites, we compared the in vivo genome-wide binding location of the yeast transcription factor Leu3 to the binding(More)
We carried out a population genomic survey of Saccharomyces cerevisiae diploid isolates and find that many budding yeast strains have high levels of genomic heterozygosity, much of which is likely due to outcrossing. We demonstrate that variation in heterozygosity among strains is correlated with a life-history trade-off that involves how readily yeast(More)
Nutrient stresses trigger a variety of developmental switches in the budding yeast Saccharomyces cerevisiae. One of the least understood of such responses is the development of complex colony morphology, characterized by intricate, organized, and strain-specific patterns of colony growth and architecture. The genetic bases of this phenotype and the key(More)
MOTIVATION Genome sequences and transcriptome analyses allow the correlation between gene regulation and DNA sequence features to be studied at the whole-genome level. To quantify these correlations, metrics are needed that can be applied to any sequence feature, regardless of its statistical distribution. It is also desirable for the metric values to be(More)
Gene inactivation by transposon insertion or allelic exchange is a powerful approach to probe gene function. Unfortunately, many microbes, including Chlamydia, are not amenable to routine molecular genetic manipulations. Here we describe an arrayed library of chemically induced mutants of the genetically intransigent pathogen Chlamydia trachomatis, in which(More)
Microorganisms evolve via a range of mechanisms that may include or involve sexual/parasexual reproduction, mutators, aneuploidy, Hsp90 and even prions. Mechanisms that may seem detrimental can be repurposed to generate diversity. Here we show that the human fungal pathogen Mucor circinelloides develops spontaneous resistance to the antifungal drug FK506(More)
Random insertional mutagenesis screens are important tools in microbial genetics studies. Investigators in fungal systems have used the plant pathogen Agrobacterium tumefaciens to create tagged, random mutations for genetic screens in their fungal species of interest through a unique process of trans-kingdom cellular transconjugation. However, identifying(More)
In this article we report the initial biochemical, genetic, and electron microscopic analysis of a previously uncharacterized, 8.9-kDa, predicted thiol-redox protein. The name A2.5L was assigned to the corresponding vaccinia virus gene, which is conserved in all sequenced poxviruses. Multiple alignment analysis and secondary structure prediction indicated(More)
Developmental phenotypes in Saccharomyces cerevisiae and related yeasts include responses such as filamentous growth, sporulation, and the formation of biofilms and complex colonies. These developmental phenotypes are regulated by evolutionarily conserved, nutrient-responsive signaling networks. The signaling mechanisms that control development in yeast are(More)