Josephine Pinkernelle

Learn More
Magnetic nanoparticles (MNPs) offer a large range of applications in life sciences. Applications in neurosciences are one focus of interest. Unfortunately, not all groups have access to nanoparticles or the possibility to develop and produce them for their applications. Hence, they have to focus on commercially available particles. Little is known about the(More)
PURPOSE It has been proposed in the literature that Fe(3)O(4) magnetic nanoparticles (MNPs) could be exploited to enhance or accelerate nerve regeneration and to provide guidance for regenerating axons. MNPs could create mechanical tension that stimulates the growth and elongation of axons. Particles suitable for this purpose should possess (1) high(More)
Nanoparticles (NPs) show new characteristics compared to the corresponding bulk material. These nanoscale properties make them interesting for various applications in biomedicine and life sciences. One field of application is the use of magnetic NPs to support regeneration in the nervous system. Drug delivery requires a functionalization of NPs with(More)
Introduction: Despite of many obstacles, vascular interventions guided by MR imaging are widely applied [1]. Interactive guidance of intravascular instruments (catheter tracking) is an attractive option but still needs improvement. Passive concepts are judged to be unreliable and unsafe. In contrast, active methods, however, are technically complex and(More)
BACKGROUND Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer's disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of(More)
Introduction: Osteochondrosis dissecans (OD) is a chronic subchondral lesion potentially affecting almost every joint. The etiology still remains unclear. Vascular, traumatic, infectious and genetic causes have been discussed. While stage I (Berndt and Harty classification) can spontaneously heal, the next stages require operative treatment. At stage II it(More)
Similar to maternal care, paternal care is a source of neonatal sensory stimulation, which in primates and rodents has been shown to be essential for developing structure and function of sensory cortices. The aim of our study in the biparental rodent Octodon degus was to assess the impact of paternal deprivation on dendritic and synaptic development in the(More)
The magnetic signals from magnetite nanoparticle-labeled PC12 cells were assessed by magnetic force microscopy by deploying a localized external magnetic field to magnetize the nanoparticles and the magnetic tip simultaneously so that the interaction between the tip and PC12 cell-associated Fe3O4 nanoparticles could be detected at lift heights (the distance(More)
Although the peripheral nervous system (PNS) is capable of regeneration, these processes are limited. As a potential means to augment PNS regeneration, the effects of cerebrolysin (CL), a proteolytic peptide fraction, were tested in vitro on Schwann cell (SC) proliferation, stress resistance, phagocytic and cluster-forming capacity. Primary SC/fibrocyte(More)
Although the peripheral nervous system is capable of regeneration, this capability is limited. As a potential means of augmenting nerve regeneration, the effects of cerebrolysin (CL)--a proteolytic peptide fraction--were tested in vitro on the motor-neuron-like NSC-34 cell line and organotypic spinal cord cultures. Therefore, NSC-34 cells were subjected to(More)