Learn More
The underlying mechanisms of neuropathic pain are poorly understood, and existing treatments are mostly ineffective. We recently demonstrated that antisense mediated "knock-down" of the sodium channel isoform, Na(V)1.8, reverses neuropathic pain behavior after L5/L6 spinal nerve ligation (SNL), implicating a critical functional role of Na(V)1.8 in the(More)
Differential expression of ion channels contributes functional diversity to sensory neuron signaling. We find nerve injury induced by the Chung model of neuropathic pain leads to striking reductions in voltage-gated K(+) (Kv) channel subunit expression in dorsal root ganglia (DRG) neurons, suggesting a potential molecular mechanism for hyperexcitability of(More)
Neuropathic pain is a debilitating chronic syndrome that often arises from injuries to peripheral nerves. Such pain has been hypothesized to be the result of an aberrant expression and function of sodium channels at the site of injury. Here, we show that intrathecal administration of specific antisense oligodeoxynucleotides (ODN) to the peripheral(More)
Neurons in the rostroventromedial medulla (RVM) project to spinal loci where the neurons inhibit or facilitate pain transmission. Abnormal activity of facilitatory processes may thus represent a mechanism of chronic pain. This possibility and the phenotype of RVM cells that might underlie experimental neuropathic pain were investigated. Cells expressing(More)
Alterations in sodium channel expression and function have been suggested as a key molecular event underlying the abnormal processing of pain after peripheral nerve or tissue injury. Although the relative contribution of individual sodium channel subtypes to this process is unclear, the biophysical properties of the tetrodotoxin-resistant current, mediated,(More)
Although the opioids are the principal treatment options for moderate to severe pain, their use is also associated with the development of tolerance, defined as the progressive need for higher doses to achieve a constant analgesic effect. The mechanisms which underlie this phenomenon remain unclear. Recent studies revealed that cholecystokinin (CCK) is(More)
Management of acute pain remains a significant clinical problem. In preclinical studies, CB2 cannabinoid receptor-selective agonists inhibit nociception without producing central nervous system side effects. The CB2 receptor-selective agonist AM1241 produces antinociceptive effects that are antagonized by CB2, but not CB1, receptor-selective antagonists,(More)
Complete or partial spinal section at T(8) has been shown to block tactile allodynia but not thermal hyperalgesia following L(5)/L(6) spinal nerve ligation (SNL), suggesting the supraspinal integration of allodynia in neuropathic pain. In the present study, the possibility of mediation of nerve injury-associated pain through tonic activity of descending(More)
Many clinical case reports have suggested that sustained opioid exposure can elicit unexpected, paradoxical pain. Here, we explore the possibility that (1) opioid-induced pain results from tonic activation of descending pain facilitation arising in the rostral ventromedial medulla (RVM) and (2) the presence of such pain manifests behaviorally as(More)
The nonopioid actions of spinal dynorphin may promote aspects of abnormal pain after nerve injury. Mechanistic similarities have been suggested between opioid tolerance and neuropathic pain. Here, the hypothesis that spinal dynorphin might mediate effects of sustained spinal opioids was explored. Possible abnormal pain and spinal antinociceptive tolerance(More)