Josephine B M Goodall

Learn More
The mineral greigite presents similar surface structures to the active sites found in many modern-day enzymes. We show that particles of greigite can reduce CO2 under ambient conditions into chemicals such as methanol, formic, acetic and pyruvic acid. Our results also lend support to the Origin of Life theory on alkaline hydrothermal vents.
The synthesis of high-strength, completely dense nanograined hydroxyapatite (bioceramic) monoliths is a challenge as high temperatures or long sintering times are often required. In this study, nanorods of hydroxyapatite (HA) and calcium-deficient HA (made using a novel continuous hydrothermal flow synthesis method) were consolidated using spark plasma(More)
In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or(More)
A novel and rapid and continuous hydrothermal route to the synthesis of extensive ultra-thin 2D sodium titanate (Na(2)Ti(3)O(7)) nano-sheets using a superheated water flow at 450 degrees C and 24.1 MPa as a crystallizing medium is described. High resolution electron microscopy of the sheets revealed that they were a few layers thick and largely uncurled,(More)
Continuous hydrothermal flow synthesis of crystalline ZnO nanorods and prisms is reported via a new pilot-scale continuous hydrothermal reactor (at nominal production rates of up to 1.2 g/h). Different size and shape particles of ZnO (wurtsite structure) were obtained via altering reaction conditions such as the concentration of either additive H2O2 or(More)
Copper oxide modified electrodes were investigated as a function of applied electrode potential using in situ infrared spectroscopy and ex situ Raman and X-ray photoelectron spectroscopy. In deoxygenated KHCO3 electrolyte bicarbonate and carbonate species were found to adsorb to the electrode during reduction and the CuO was reduced to Cu(i) or Cu(0)(More)
  • 1