Learn More
In near-field scanning optical microscopy, a light source or detector with dimensions less than the wavelength (lambda) is placed in close proximity (lambda/50) to a sample to generate images with resolution better than the diffraction limit. A near-field probe has been developed that yields a resolution of approximately 12 nm ( approximately lambda/43) and(More)
We present a compact 1.3 x 4 µm 2 Germanium waveguide photodiode, integrated in a CMOS compatible silicon photonics process flow. This photodiode has a best-in-class 3 dB cutoff frequency of 45 GHz, responsivity of 0.8 A/W and dark current of 3 nA. The low intrinsic capacitance of this device may enable the elimination of transimpedance amplifiers in future(More)
We analyze energy consumption in optical modulators operated in depletion and intended for low-power interconnect applications. We include dynamic dissipation from charging modulator capacitance and net energy consumption from absorption and photocurrent, both in reverse and small forward bias. We show that dynamic dissipation can be independent of static(More)
Measurement of the transmitted intensity from a coherent monomode light source through a series of subwavelength slit arrays in Ag films, with varying array pitch and number of slits, demonstrates enhancement ͑suppression͒ by factors of as much as 6 ͑9͒ when normalized to the transmission efficiency of an isolated slit. Pronounced minima in the transmitted(More)
We analyze the physical-chemical surface properties of single-slit, single-groove subwavelength-structured silver films with high-resolution transmission electron microscopy and calculate exact solutions to Maxwell's equations corresponding to recent far-field interferometry experiments using these structures. Contrary to a recent suggestion the surface(More)
We experimentally demonstrate that hybridized nanocavities in optically thick metal films radiate in coherence, and act as an efficient single-polarized plasmonic nano-antenna array. We employ propagating and localized plasmons to enhance polarization control along one axis, with total suppression of the perpendicular polarization component. The(More)