Joseph W. Haus

Learn More
A simple difference frequency generation (DFG) scheme based on two seeded optical parametric generators is presented as a tunable terahertz (THz) source. Using the nonlinear optical crystal 4-dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST) as the DFG crystal, our system has demonstrated continuous and seamless tunable operation from 1.6 to 4.5 THz.(More)
We numerically demonstrate negative refraction of the Poynting vector and sub-wavelength focusing in the visible part of the spectrum using a transparent multilayer, metallo-dielectric photonic band gap structure. Our results reveal that in the wavelength regime of interest evanescent waves are not transmitted by the structure, and that the main underlying(More)
A novel basis for beam steering with electrowetting microprisms (EMPs) is reported. EMPs utilize electrowetting modulation of liquid contact angle in order to mimic the refractive behavior for various classical prism geometries. Continuous beam steering through an angle of 14 degrees (+/-7 degrees ) has been demonstrated with a liquid index of n=1.359.(More)
We explore a new passive optical limiter design using transverse modulation instability in the one-dimensional photonic crystal (PC) using x(3) materials. The performance of PC optical limiters strongly depends on the choice of the materials and the geometry and it improves as the duration of the incident pulse is extended. PC optical limiter performance is(More)
Using the concept of an effective medium, we derive coupled mode equations for nonlinear quadratic interactions in photonic band gap structures of finite length. The resulting equations reveal the essential roles played by the density of modes and effective phase matching conditions necessary for the strong enhancement of the nonlinear response. Our(More)
A new class of liquid electro-optics based on electrowetting is able to replicate the high performance of solid geometrical optics. Scaled-down electrowetting optics can be arrayed in order to achieve a flat and large area form factor. Techniques for applying electrowetting devices to light valves and arrayed microprisms are reviewed. Electrowetting light(More)
A plasmonic electro-optic modulator design using an evanescently coupled resonant metal grating is numerically studied in this Letter. Owing to excitation and propagation of long-range surface plasmons between the metal grating nanowires, a deep and narrow reflection dip can be obtained. Improved modulation performance is achieved through decreased damping(More)