Learn More
Inflammation causes the induction of cyclooxygenase-2 (Cox-2), leading to the release of prostanoids, which sensitize peripheral nociceptor terminals and produce localized pain hypersensitivity. Peripheral inflammation also generates pain hypersensitivity in neighbouring uninjured tissue (secondary hyperalgesia), because of increased neuronal excitability(More)
Phospholipase A2 (PLA2) enzymes are critical regulators of prostaglandin and leukotriene synthesis and can directly modify the composition of cellular membranes. PLA2 enzymes release fatty acids and lysophospholipids, including the precursor of platelet-activating factor, PAF, from phospholipids. Free fatty acids, eicosanoids, lysophospholipids and PAF are(More)
0 drenal Gland Ankle Joint adder Urinary Blood Cells essels (Aorta) Bone (Femur) arrow (Femur) ain Amygdala Cortex Frontal Hippocampus Hypothalamus Cartilage Cecum Colon Duodenum ipose Tissue) Fat (White) Heart Apex Ileum Jejunum Kidney ney (Cortex) ey (Medulla) Liver Lung Lymph Nodes scle (Skeletal) erve (Sciatic) Ovary uitary (Gland) Renal Artery Skin(More)
Neuronal expression of familial Alzheimer's disease-mutant human amyloid precursor protein (hAPP) and hAPP-derived amyloid-beta (Abeta) peptides causes synaptic dysfunction, inflammation and abnormal cerebrovascular tone in transgenic mice. Fatty acids may be involved in these processes, but their contribution to Alzheimer's disease pathogenesis is(More)
BACKGROUND Secondary-ion mass spectrometry (SIMS) is an important tool for investigating isotopic composition in the chemical and materials sciences, but its use in biology has been limited by technical considerations. Multi-isotope imaging mass spectrometry (MIMS), which combines a new generation of SIMS instrument with sophisticated ion optics, labeling(More)
Ion channels reside in a sea of phospholipids. During normal fluctuations in membrane potential and periods of modulation, lipids that directly associate with channel proteins influence gating by incompletely understood mechanisms. In one model, M(1)-muscarinic receptors (M(1)Rs) may inhibit both Ca(2+) (L- and N-) and K(+) (M-) currents by losing a(More)
Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 min injury, although post-ischemic renal arteriolar diameter was equal to the wild type(More)
Brain phospholipase A2 (PLA2) activity has not been well characterized. Given the importance of this enzymatic activity for a variety of cellular functions in the brain, we characterized the subcellular distribution of PLA2 activity in gerbil brain and evaluated how PLA2 activity was altered by ischemia and reperfusion. Cytosolic, mitochondrial, and(More)
Phospholipase A2 (PLA2) enzymes are critical regulators of prostaglandin and leukotriene synthesis, and they may also play an important role in the generation of intracellular free radicals. The group IV cytosolic form of phospholipase A2 (cPLA2) is regulated by changes in intracellular calcium concentration, and the enzyme preferentially acts to release(More)
Dominantly inherited missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease, but its normal physiological function remains unclear. We previously reported that loss of LRRK2 causes impairment of protein degradation pathways as well as increases of apoptotic cell death and inflammatory responses in(More)