Learn More
Myosin VIIa is a newly identified member of the myosin superfamily of actin-based motors. Recently, the myosin VIIa gene was identified as the gene defective in shaker-1, a recessive deafness in mice [Gibson, F., Walsh, J., Mburu, P., Varela, A., Brown, K.A., Antonio, M., Beisel, K.W., Steel, K.P. & Brown, S.D.M. (1995) Nature (London) 374, 62-64], and in(More)
Salicylate, one of the most widely used drugs, is known to induce reversible tinnitus and hearing loss. Salicylate interferes with outer hair cells (OHCs), which are believed to underlie normal auditory frequency selectivity and sensitivity. In the present experiments, the effects of salicylate and lanthanides on OHC motility and nonlinear capacitance were(More)
Whole cell voltage clamp and freeze fracture were used to study the electrophysiological and ultrastructural correlates of the outer hair cell (OHC) lateral membrane molecular motors. We find that specific voltage-dependent capacitance, which derives from motility-related charge movement, increases as cell length decreases. This increasing non-linear charge(More)
The outer hair cell lateral membrane motor, prestin, drives the cell's mechanical response that underpins mammalian cochlear amplification. Little is known about the protein's structure-function relations. Here we provide evidence that prestin is a 10-transmembrane domain protein whose membrane topology differs from that of previous models. We also present(More)
Whole-cell voltage clamp and displacement-measuring photodiode techniques were used to study electrophysiological and mechanical properties of the guinea pig outer hair cell (OHC). OHCs demonstrate a voltage-mechanical response (V-M) function that can be fit by a two state Boltzmann relation, where the cell normally rests near the hyperpolarizing saturation(More)
1. Isolated outer hair cells (OHCs) from the guinea-pig were whole-cell voltage clamped to study the influence of initial voltage on the voltage dependence of motility-related gating current or, equivalently, on the voltage dependence of membrane capacitance. 2. Prepulse delivery caused changes in the magnitude of motility-related gating currents, which are(More)
The integral membrane protein prestin, a member of the SLC26 anion transporter family, is responsible for the voltage-driven electromotility of mammalian outer hair cells. It was argued that the evolution of prestin's motor function required a loss of the protein's transport capabilities. Instead, it was proposed that prestin manages only an abortive(More)
The outer hair cell (OHC) from the organ of Corti plays a crucial role in hearing through its unique voltage-dependent mechanical responses. Furosemide, one of the loop diuretics, disrupts normal cochlear function. Here we report on direct effects of furosemide on OHC motility-related, voltage-dependent capacitance using the whole-cell patch-clamp(More)
The outer hair cell (OHC) possesses a nonlinear charge movement whose characteristics indicate that it represents the voltage sensor responsible for OHC mechanical activity. OHC mechanical activity is known to exist along a restricted extent of the cell's length. We have used a simultaneous partitioning microchamber and whole cell voltage clamp technique to(More)
The outer hair cell (OHC) from the organ of Corti is believed to be responsible for the mammal's exquisite sense of hearing. A membrane-based motile response of this cell underlies the initial processing of acoustic energy. The voltage-dependent capacitance of the OHC, possibly reflecting charge movement of the motility voltage sensor, was measured in cells(More)