Learn More
The formation of social attachments is a critical component of human relationships. Infants begin to bond to their caregivers from the moment of birth, and these social bonds continue to provide regulatory emotional functions throughout adulthood. It is difficult to examine the interactions between social experience and the biological origins of these(More)
Epigenetic modifications to the genome, including DNA methylation and histone modifications, occur in response to external stimuli. Reproductive function is highly sensitive to environmental conditions including season, diet, hormonal changes, and exposure to chemical contaminants. GnRH neurons, which play a key role in reproduction, are particularly(More)
Sex differences in the brain are largely organized by a testicular hormone surge that occurs in males shortly after birth. Although this hormone surge is transient, sex differences in brain and behavior are lasting. Here we describe a sex difference in DNA methylation of the estrogen receptor-alpha (ERalpha) promoter region within the developing rat(More)
Mutations in MECP2 cause Rett syndrome (RTT), an X-linked neurodevelopmental disorder that primarily affects females. Individuals with RTT have increased glial fibrillary acidic protein (GFAP) expression in the brain. GFAP is an intermediate filament protein that is expressed predominately within astrocytes in the CNS. MeCP2 binds to methylated regions of(More)
Pervasive developmental disorder is a classification covering five related conditions including the neurodevelopmental disorder Rett syndrome (RTT) and autism. Of these five conditions, only RTT has a known genetic cause with mutations in Methyl-CpG-binding protein 2 (MeCP2), a global repressor of gene expression, responsible for the majority of RTT cases.(More)
Several neurodevelopmental disorders are marked by atypical Methyl-CpG-binding protein 2 (MeCP2) expression or function; however, the role of MeCP2 is complex and not entirely clear. Interestingly, there are sex differences in some of these disorders, and it appears that MeCP2 has sex-specific roles during development. Specifically, recent data indicate(More)
Cellular and molecular mechanisms underlying pulsatile GnRH release are not well understood. In the present study, we examined the developmental changes in intracellular calcium dynamics, peptide release, gene expression, and DNA methylation in cultured GnRH neurons derived from the nasal placode of rhesus monkeys. We found that GnRH neurons were(More)
Methyl-CpG-binding protein 2 (MeCP2) binds methylated DNA and recruits corepressor proteins to modify chromatin and alter gene transcription. Mutations of the MECP2 gene can cause Rett syndrome, whereas subtle reductions of MeCP2 expression may be associated with male-dominated social and neurodevelopmental disorders. We report that transiently decreased(More)
Release of gonadotropin releasing hormone (GnRH) from the medial basal hypothalamus (MBH)/median eminence region (S-ME) is essential for normal reproductive function. GnRH release is profoundly regulated by the negative and positive feedback effects of ovarian estradiol (E2). Here we report that neuroestradiol, released in the S-ME, also directly influences(More)
Since Ernst Knobil proposed the concept of the gonadotrophin-releasing hormone (GnRH) pulse-generator in the monkey hypothalamus three decades ago, we have made significant progress in this research area with cellular and molecular approaches. First, an increase in pulsatile GnRH release triggers the onset of puberty. However, the question of what triggers(More)