Joseph R. Burgoyne

Learn More
Changes in the concentration of oxidants in cells can regulate biochemical signaling mechanisms that control cell function. We have found that guanosine 3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) functions directly as a redox sensor. The Ialpha isoform, PKGIalpha, formed an interprotein disulfide linking its two subunits in cells exposed to(More)
Here we demonstrate that type I protein kinase A is redoxactive, forming an interprotein disulfide bond between its two regulatory RI subunits in response to cellular hydrogen peroxide. This oxidative disulfide formation causes a subcellular translocation and activation of the kinase, resulting in phosphorylation of established substrate proteins. The(More)
Dysregulated blood pressure control leading to hypertension is prevalent and is a risk factor for several common diseases. Fully understanding blood pressure regulation offers the possibility of developing rationale therapies to alleviate hypertension and associated disease risks. Although hydrogen sulfide (H2S) is a well-established endogenous vasodilator,(More)
Redox signaling refers to the specific and usually reversible oxidation/reduction modification of molecules involved in cellular signaling pathways. In the heart, redox signaling regulates several physiological processes (eg, excitation-contraction coupling) and is involved in a wide variety of pathophysiological and homoeostatic or stress response(More)
Sirtuin-1 (SIRT1) is an NAD(+)-dependent protein deacetylase that is sensitive to oxidative signals. Our purpose was to determine whether SIRT1 activity is sensitive to the low molecular weight nitrosothiol, S-nitrosoglutathione (GSNO), which can transduce oxidative signals into physiological responses. SIRT1 formed mixed disulfides with GSNO-Sepharose, and(More)
SIGNIFICANCE Reactive oxygen and nitrogen species contributing to homeostatic regulation and the pathogenesis of various cardiovascular diseases, including atherosclerosis, hypertension, endothelial dysfunction, and cardiac hypertrophy, is well established. The ability of oxidant species to mediate such effects is in part dependent on their ability to(More)
The transnitrosylating nitric oxide (NO) donor nitrocysteine (CysNO) induced a disulfide bond between the two regulatory RI subunits of protein kinase A (PKA). The conventional NO donor S-nitroso-N-acetylpenicillamine failed to do this, consistent with our observation that it also did not promote protein S-nitrosylation. This disulfide oxidation event(More)
Protein kinase G (PKG) is activated by nitric oxide (NO)-induced cGMP binding or alternatively by oxidant-induced interprotein disulfide formation. We found preactivation with cGMP attenuated PKG oxidation. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) blockade of cGMP production increased disulfide PKG to 13 ± 2% and 29±4% of total in aorta and(More)
SIGNIFICANCE Oxidants were once principally considered perpetrators of injury and disease. However, this has become an antiquated view, with cumulative evidence showing that the oxidant hydrogen peroxide serves as a signaling molecule. Hydrogen peroxide carries vital information about the redox state of the cell and is crucial for homeostatic regulation(More)
The control of vascular smooth muscle contractility enables regulation of blood pressure, which is paramount in physiological adaptation to environmental challenges. Maintenance of stable blood pressure is crucial for health as deregulation (caused by high or low blood pressure) leads to disease progression. Vasotone is principally controlled by the cyclic(More)