Learn More
Nonrandom and somatically acquired chromosomal translocations can be identified in nearly 50% of human acute myeloid leukemias. One common chromosomal translocation in this disease is the 8q22;21q22 translocation. It involves the AML1 (RUNX1) gene on chromosome 21 and the ETO (MTG8, RUNX1T1) gene on chromosome 8 generating the AML1-ETO fusion proteins. In(More)
Recent research has yielded a dramatic increase in the number of connections between oncogenesis and the proteins which regulate the cell cycle. Three classes of protein which inhibit the activity of cyclin-dependent kinases (CDKs) have emerged as potential targets for oncogenic inactivation. p16 and related proteins inhibit the cyclin/CDK complexes which(More)
The 8;21 chromosomal translocation occurs in 15% to 40% of patients with the FAB M2 subtype of acute myeloid leukemia (AML). This chromosomal abnormality fuses part of the AML1/RUNX1 gene to the ETO/MTG8 gene and generates the AML1-ETO protein. We previously identified a C-terminal truncated AML1-ETO protein (AEtr) in a mouse leukemia model. AEtr is almost(More)
An important mechanism by which the tumor suppressor p53 maintains genomic stability is to induce cell cycle arrest through activation of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1) gene. We show that the gene encoding the gut-enriched Krüppel-like factor (GKLF, KLF4) is concurrently induced with p21(WAF1/Cip1) during serum deprivation and DNA(More)
The Waf1/Cip1 protein induces cell cycle arrest through inhibition of the activity of cyclin-dependent kinases and proliferating cell nuclear antigen. Expression of the WAF1/CIP1 gene is induced in a p53-dependent manner in response to DNA damage but can also be induced in the absence of p53 by agents such as growth factors, phorbol esters, and okadaic(More)
Emerging evidence suggests that microRNAs (miRNAs), an abundant class of ∼22-nucleotide small regulatory RNAs, play key roles in controlling the post-transcriptional genetic programs in stem and progenitor cells. Here we systematically examined miRNA expression profiles in various adult tissue-specific stem cells and their differentiated counterparts. These(More)
Bryostatin 1 is a natural antineoplastic agent that activates protein kinase C. Treatment of U937 human leukemic cells with bryostatin 1 caused a 60% reduction in cell growth, whereas another protein kinase C activator, phorbol myristate acetate (PMA), completely inhibited U937 cell growth. Both bryostatin 1 and PMA induced inhibition of cyclin-dependent(More)
We report the cloning of a cDNA encoding GliPR (glioma pathogenesis-related protein), a protein that is structurally similar to plant pathogenesis-related proteins. The GLIPR gene is highly expressed in the human brain tumor, glioblastoma multiforme/astrocytoma, but neither in normal fetal or adult brain tissue, nor in other nervous system tumors. GliPR(More)
The interaction of helix-loop-helix (HLH) proteins is known to regulate the differentiation of several different tissues, including mammalian muscle and the insect peripheral nervous system. In myoblasts, the products of myogenic HLH genes such as MyoD and ubiquitous HLH proteins such as E12 are present at constant levels throughout development. An E12(More)
The human brm (hbrm) protein (homologue of the Drosophila melanogaster brahma and Saccharomyces cervisiae SNF-2 proteins) is part of a polypeptide complex believed to regulate chromatin conformation. We have shown that the hbrm protein is cleaved in NB4 leukemic cells after induction of apoptosis by UV-irradiation, DNA damaging agents, or staurosporine.(More)