Learn More
We propose <i>B-MAC</i>, a carrier sense media access protocol for wireless sensor networks that provides a flexible interface to obtain ultra low power operation, effective collision avoidance, and high channel utilization. To achieve low power operation, <i>B-MAC</i> employs an adaptive preamble sampling scheme to reduce duty cycle and(More)
We present <i>Telos</i>, an ultra low power wireless sensor module ("mote") for research and experimentation. Telos is the latest in a line of motes developed by UC Berkeley to enable wireless sensor network (WSN) research. It is a new mote design built from scratch based on experiences with previous mote generations. Telos' new design consists of three(More)
We provide an in-depth study of applying wireless sensor networks to real-world habitat monitoring. A set of system design requirements are developed that cover the hardware design of the nodes, the design of the sensor network, and the capabilities for remote data access and management. A system architecture is proposed to address these requirements for(More)
Habitat and environmental monitoring is a driving application for wireless sensor networks. We present an analysis of data from a second generation sensor networks deployed during the summer and autumn of 2003. During a 4 month deployment, these networks, consisting of 150 devices, produced unique datasets for both systems and biological analysis. This(More)
The constraints of sensor networks, an emerging area of network research, require new approaches in system design. We study the evolution of abstractions and techniques in TinyOS, a popular sensor network operating system. Examining CVS repositories of several research institutions that use TinyOS, we trace three areas of development: single-hop networking,(More)
Environmental energy is an attractive power source for low power wireless sensor networks. We present <i>Prometheus</i>, a system that intelligently manages energy transfer for perpetual operation without human intervention or servicing. Combining positive attributes of different energy storage elements and leveraging the intelligence of the microprocessor,(More)
Habitat monitoring is an important driving application for wireless sensor networks (WSNs). Although researchers anticipate some challenges arising in the real-world deployments of sensor networks, a number of problems can be discovered only through experience. This paper evaluates a sensor network system described in an earlier work and presents a set of(More)
Recent technological advances and the continuing quest for greater efficiency have led to an explosion of link and network protocols for wireless sensor networks. These protocols embody very different assumptions about network stack composition and, as such, have limited interoperability. It has been suggested [3] that, in principle, wireless sensor(More)
The wireless sensor network "macroscope" offers the potential to advance science by enabling dense temporal and spatial monitoring of large physical volumes. This paper presents a case study of a wireless sensor network that recorded 44 days in the life of a 70-meter tall redwood tree, at a density of every 5 minutes in time and every 2 meters in space.(More)