Learn More
Near-infrared spectroscopy (NIRS) has been used to noninvasively monitor adult human brain function in a wide variety of tasks. While rough spatial correspondences with maps generated from functional magnetic resonance imaging (fMRI) have been found in such experiments, the amplitude correspondences between the two recording modalities have not been fully(More)
We have measured the changes in oxy-haemoglobin and deoxy-haemoglobin in the adult human brain during a brief finger tapping exercise using near-infrared spectroscopy (NIRS). The cerebral metabolic rate of oxygen (CMRO2) can be estimated from these NIRS data provided certain model assumptions. The change in CMRO2 is related to changes in the total(More)
We combine two near-infrared diffuse optical techniques to study variations of blood flow, haemoglobin concentration, and blood oxygen saturation in the functioning rat brain. Diffuse correlation spectroscopy (or flowmetry) monitors changes in the cerebral blood flow, without the use of the principles of tracer clearance, by measuring the optical(More)
Functional neuroimaging is a vital element of neuroscience and cognitive research and, increasingly, is an important clinical tool. Diffuse optical imaging is an emerging, noninvasive technique with unique portability and hemodynamic contrast capabilities for mapping brain function in young subjects and subjects in enriched or clinical environments. We have(More)
Diffuse optical tomography (DOT) is an attractive approach for evaluating stroke physiology. It provides hemodynamic and metabolic imaging with unique potential for continuous noninvasive bedside imaging in humans. To date there have been few quantitative spatial-temporal studies of stroke pathophysiology based on diffuse optical signatures. The authors(More)
With the aim of evaluating the relative performance of hemodynamic contrasts for mapping brain activity, the spatio-temporal response of oxy-, deoxy-, and total-hemoglobin concentrations were imaged with diffuse optical tomography during electrical stimulation of the rat somatosensory cortex. For both 6-s and 30-s stimulus durations, total hemoglobin images(More)
Despite the unique brain imaging capabilities and advantages of functional near-infrared spectroscopy (fNIRS), including portability and comprehensive hemodynamic measurement, widespread acceptance in the neuroimaging community has been hampered by low spatial resolution and image localization errors. While recent technical developments such as high-density(More)
We have performed a noninvasive bilateral optical imaging study of the hemodynamic evoked response to unilateral finger opposition task, finger tactile, and electrical median nerve stimulation in the human sensorimotor cortex. This optical study shows the hemoglobin-evoked response to voluntary and nonvoluntary stimuli. We performed measurements on 10(More)
Functional neuroimaging (e.g., with fMRI) has been difficult to perform in mice, making it challenging to translate between human fMRI studies and molecular and genetic mechanisms. A method to easily perform large-scale functional neuroimaging in mice would enable the discovery of functional correlates of genetic manipulations and bridge with mouse models(More)
Functional neuroimaging commands a dominant role in current neuroscience research. However its use in bedside clinical and certain neuro-scientific studies has been limited because the current tools lack the combination of being non-invasive, non-ionizing and portable while maintaining moderate resolution and localization accuracy. Optical neuroimaging(More)