Joseph Murdaca

Learn More
Nonenzymatic glycation is increased in diabetes and leads to elevated levels of advanced glycation end products (AGEs), which link hyperglycemia to the induction of insulin resistance. In hyperglycemic conditions, intracellularly formed alpha-ketoaldehydes, such as methylglyoxal, are an essential source of intracellular AGEs, and the abnormal accumulation(More)
Advanced glycation end products (AGEs) are generated during long term diabetes and are correlated with the development of diabetic complications, such as retinopathy. Diabetic retinopathy is characterized by an increased retinal neovascularization due to the action of the angiogenic factor, vascular endothelial growth factor (VEGF). In this report, we show(More)
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor involved in normal mammalian development and in the pathogenesis of several disease states. It consists of two subunits, HIF-1alpha, which is degraded during normoxia, and HIF-1beta, which is constitutively expressed. Activated HIF-1 induces the expression of genes involved in angiogenesis,(More)
Hypoxia-inducible factor-1 (HIF-1), a transcription factor composed of two subunits (HIF-1alpha and HIF-1beta), initially described as a mediator of adaptive responses to changes in tissue oxygenation, has been shown to be activated in an oxygen-independent manner. In this report, we studied the action of IGF-I on the regulation of HIF-1 in human retinal(More)
One of the cellular mechanisms used to prevent continuous and enhanced activation in response to growth factors is the internalization and degradation of their receptors. Little is known about the molecular mechanisms involved in vascular endothelial growth factor receptor-2 (VEGF-R2) degradation. In a previous work, we have shown that the adaptor protein(More)
The newly identified insulin receptor (IR) substrate, Gab1 [growth factor receptor bound 2 (Grb2)-associated binder-1] is rapidly phosphorylated on several tyrosine residues by the activated IR. Phosphorylated Gab1 acts as a docking protein for Src homology-2 (SH2) domain-containing proteins. These include the regulatory subunit p85 of phosphatidylinositol(More)
Insulin, insulin like growth factor (IGF)-1, and AMP-activated protein kinase (AMPK) signaling regulate independently angiogenesis through vascular endothelial growth factor (VEGF) expression. In the present study, we investigated a potential cross-talk between these signaling pathways on hypoxia-inducible factor (HIF)-1alpha and VEGF expression. Retinal(More)
Using the yeast two-hybrid system, a genetic assay for studying protein-protein interactions, we have examined and compared the interaction of the insulin-like growth factor-I receptor (IGF-IR) and the insulin receptor (IR) with their two known substrates p52Shc and the insulin receptor substrate-1 (IRS-1). We also mapped the specific domains of the IGF-IR(More)
We reported recently that peroxisome proliferator-activated receptor β (PPARβ) activation promotes a calcineurin-dependent exercise-like remodelling characterised by increased numbers of oxidative fibres and capillaries. As physical exercise also induces myonuclear accretion, we investigated whether PPARβ activation alters myonuclear density. Transgenic(More)
AIMS Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors. PPARbeta agonists were suggested as potential drugs for the treatment of metabolic syndrome, but effects of PPARbeta activation on cardiac growth and vascularization are unknown. Thus, we investigated the consequences of pharmacological PPARbeta activation(More)