Joseph Masiero

  • Citations Per Year
Learn More
In this paper we consider the problem of finding sets of points that conform to a given underlying model from within a dense, noisy set of observations. This problem is motivated by the task of efficiently linking faint asteroid detections, but is applicable to a range of spatial queries. We survey current tree-based approaches, showing a trade-off exists(More)
In this paper we present the design, calibration method, and initial results of the Dual-Beam Imaging Polarimeter (DBIP). This new instrument is designed to measure the optical polarization properties of point sources, in particular Main Belt asteroids. This instrument interfaces between the Tek 2048× 2048 camera and the University of Hawaii’s 88-inch(More)
The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) under development at the University of Hawaii’s Institute for Astronomy is creating the first fully automated end-to-end Moving Object Processing System (MOPS) in the world. It will be capable of identifying detections of moving objects in our solar system and linking those detections(More)
We have developed a theoretical description of how of an asteroid’s polarizationphase curve will be affected by the removal of the dust from the surface due to a sizedependent phenomenon such as radiation pressure-driven escape of levitated particles. We test our calculations against new observations of four small (D ≈ 1 km) nearEarth asteroids [(85236),(More)
In this paper we consider the problem of finding sets of points that conform to a given underlying model from within a dense, noisy set of observations. This problem is motivated by the task of efficiently linking faint asteroid detections, but is applicable to a range of spatial queries. We survey current tree-based approaches, showing a tradeoff exists(More)
We present our investigation into the physical conditions of the gas in five intervening quasar absorption line systems along the line of sight toward the quasar PG 0117 + 213, with redshifts of z = 0.57, z = 0.72, z = 1.04, z = 1.32 and z = 1.34. Photoionization modeling of HST, Keck I, and Palomar data, using the code Cloudy, is employed to derive(More)
We have carried out simulations to predict the performance of a new space-based telescopic survey operating at thermal infrared wavelengths that seeks to discover and characterize a large fraction of the potentially hazardous near-Earth asteroid (NEA) population. Two potential architectures for the survey were considered: one located at the Earth–Sun L1(More)
The Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) mission continues to detect, track, and characterize minor planets. We present diameters and albedos calculated from observations taken during the second year since the spacecraft was reactivated in late 2013. These include 207 near-Earth asteroids (NEAs) and 8885 other asteroids. Of the(More)
We present thermal model fits for 11 Jovian and 3 Saturnian irregular satellites based on measurements from the WISE/NEOWISE data set. Our fits confirm spacecraft-measured diameters for the objects with in situ observations (Himalia and Phoebe) and provide diameters and albedo for 12 previously unmeasured objects, 10 Jovian and 2 Saturnian irregular(More)
We present preliminary diameters and albedos for 7956 asteroids detected in the first year of the NEOWISE Reactivation mission. Of those, 201 are near-Earth asteroids and 7755 are Main Belt or Mars-crossing asteroids. 17% of these objects have not been previously characterized using the Near-Earth Object Wide-field Infrared Survey Explorer, or “NEOWISE ”(More)