Learn More
The fem-1 gene of Caenorhabditis elegans functions in a signaling pathway that controls sex determination. Homologs of fem-1 in mammals have been characterized, consisting of two family members, Fem1a and Fem1b. We report here on Fem1c, a third member of the Fem1 gene family, in three vertebrate species: human, mouse, and zebrafish. The proteins encoded by(More)
Type 2 diabetes mellitus is a disorder of glucose homeostasis involving complex gene and environmental interactions that are incompletely understood. Mammalian homologs of nematode sex determination genes have recently been implicated in glucose homeostasis and type 2 diabetes mellitus. These are the Hedgehog receptor Patched and Calpain-10, which have(More)
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age, and is characterized by infertility, hyperandrogenism and insulin resistance in skeletal muscle. There is evidence for a PCOS gene localized to chromosome 19p13.3. The FEMIA gene maps to chromosome 19p13.3 and is highly expressed in skeletal muscle. FEMIA(More)
Diabetes mellitus (DM) is an important risk factor for the development of cardiovascular disease. Extensive clinical, epidemiologic, and basic studies suggest that excessive tissue iron stores may contribute to the occurrence and complications of DM. Secondary diabetes occurs in inherited pathologic iron overload syndromes of European- and African-derived(More)
The HMG-I/Y gene encodes the HMG-I and HMG-Y proteins, which function as architectural chromatin binding proteins important in the transcriptional regulation of several genes. Although increased expression of the HMG-I/Y proteins is associated with cellular proliferation, neoplastic transformation, and several human cancers, the role of these proteins in(More)
The HMG-I gene family encodes high mobility group proteins originally identified as nonhistone chromosomal binding proteins. HMG-I and -Y proteins are alternatively spliced products of the same mRNA; HMG-C is encoded by a separate gene. The HMG-I proteins function as architectural chromatin-binding proteins that bind to the narrow groove of AT-rich regions(More)
Smooth muscle cells (SMCs) contract to perform many physiological functions, including regulation of blood flow and pressure in arteries, contraction of the pupils, peristalsis of the gut, and voiding of the bladder. SMC lineage in these organs is characterized by cellular expression of the SMC isoform of α-actin, encoded by the ACTA2 gene. We report here(More)