Joseph M. McDonough

Learn More
Genes encoding neuronal nicotinic acetylcholine receptors exhibit restricted patterns of expression in the nervous system. We are interested in elucidating the molecular mechanisms responsible for establishing these patterns of expression. This paper presents the characterization of regulatory elements upstream of the neuronal nicotinic acetylcholine(More)
The expression patterns of three clustered neuronal nicotinic acetylcholine receptor (nAchR) subunit genes ordered beta 4, alpha 3, and alpha 5 overlap extensively in the peripheral nervous system (PNS) but only partially in the central nervous system (CNS). We have begun to investigate cell type-specific cis elements regulating these genes by analyzing in(More)
Computational fluid dynamics (CFD) analysis was used to model the effect of collapsing airway geometry on internal pressure and velocity in the pharyngeal airway of three sedated children with obstructive sleep apnea syndrome (OSAS) and three control subjects. Model geometry was reconstructed from volume-gated magnetic resonance images during normal tidal(More)
Receptors assembled from the products of a neuronal beta4alpha3alpha5 NAChR gene cluster depend on these genes being coordinately regulated in particular populations of neurons. Little is known, however, about the transcriptional mechanisms that are likely to underlie their co-expression in correct neuronal cell types. We have identified several regulatory(More)
Expression of neurotransmitter receptors encoded by the nicotinic acetylcholine receptor (nAchR) subunit gene cluster depends on coexpression of the beta4, alpha3, and alpha5 subunits in certain kinds of neurons. One way in which coexpression might be achieved is through the regulation of promoters in the cluster by neuron-selective enhancers. The beta43'(More)
Computational fluid dynamics (CFD) analysis may quantify the severity of anatomical airway restriction in obstructive sleep apnea syndrome (OSAS) better than anatomical measurements alone. However, optimal CFD model endpoints to characterize or assess OSAS have not been determined. To model upper airway fluid dynamics using CFD and investigate the strength(More)
Since the Gβγ subunit of Gi protein has been importantly implicated in regulating immune and inflammatory responses, this study investigated the potential role and mechanism of action of Gβγ signaling in regulating the induction of airway hyperresponsiveness (AHR) in a rabbit model of allergic asthma. Relative to non-sensitized animals, OVA-sensitized(More)
Lung function is a heritable trait and serves as an important clinical predictor of morbidity and mortality for pulmonary conditions in adults, however, despite its importance, no studies have focused on uncovering pediatric-specific loci influencing lung function. To identify novel genetic determinants of pediatric lung function, we conducted a genome-wide(More)