Learn More
RATIONALE Mechanisms leading to obstructive sleep apnea syndrome (OSAS) in obese children are not well understood. OBJECTIVES The aim of the study was to determine anatomical risk factors associated with OSAS in obese children as compared with obese control subjects without OSAS. METHODS Magnetic resonance imaging was used to determine the size of upper(More)
Computational fluid dynamics (CFD) analysis may quantify the severity of anatomical airway restriction in obstructive sleep apnea syndrome (OSAS) better than anatomical measurements alone. However, optimal CFD model endpoints to characterize or assess OSAS have not been determined. To model upper airway fluid dynamics using CFD and investigate the strength(More)
BACKGROUND Improvements in obstructive sleep apnea syndrome (OSAS) severity may be associated with improved pharyngeal fluid mechanics following adenotonsillectomy (AT). The study objective is to use image-based computational fluid dynamics (CFD) to model changes in pharyngeal pressures after AT, in obese children with OSAS and adenotonsillar hypertrophy.(More)
The anatomical relationships between lymphoid, bony, and other tissues affecting the shape of the upper airway in children with obstructive sleep apnea syndrome (OSAS) have not been established. We therefore compared the upper airway structure in 18 young children with OSAS (age 4.8 +/- 2.1 yr; 12 males and 6 females) and an apnea index of 4.3 +/- 3.9, with(More)
Detailed analysis of the upper airway has not been performed in children with obstructive sleep apnea. We used magnetic resonance imaging and automatic segmentation to delineate the upper airway in 20 children with obstructive sleep apnea and in 20 control subjects (age, 3.7 +/- 1.4 versus 3.9 +/- 1.7 years, respectively). We measured mean and minimal(More)
Computational fluid dynamic (CFD) analysis was used to model the effect of airway geometry on internal pressure in the upper airway of three children with obstructive sleep apnea syndrome (OSAS), and three controls. Model geometry was reconstructed from magnetic resonance images obtained during quiet tidal breathing, meshed with an unstructured grid, and(More)
The upper airway undergoes progressive changes during childhood. Using magnetic resonance imaging (MRI), we studied the growth relationships of the tissues surrounding the upper airway (bone and soft tissues) in 92 normal children (47% males; range, 1 to 11 yr) who underwent brain MRI. None had symptoms of sleep-disordered breathing or conditions that(More)
The effects of positive end-expiratory pressure (PEEP) on lung tissue resistance (Rti) and dynamic elastance (Edyn,L) were examined separately during histamine-induced lung constriction and after saline lung lavage in anesthetized paralyzed New Zealand White rabbits. During mechanical ventilation in the open-chest state, Rti and Edyn,L were estimated by(More)
Computational fluid dynamics (CFD) analysis was used to model the effect of collapsing airway geometry on internal pressure and velocity in the pharyngeal airway of three sedated children with obstructive sleep apnea syndrome (OSAS) and three control subjects. Model geometry was reconstructed from volume-gated magnetic resonance images during normal tidal(More)
RATIONALE AND OBJECTIVES The purpose of this study was to evaluate whether a computerized system developed to help delineate the upper airway and surrounding structures with magnetic resonance (MR) imaging was effective for aiding in the diagnosis of upper airway disorders in children. MATERIALS AND METHODS The authors performed axial T2-weighted MR(More)