Learn More
We describe a new generation of protein-targeted contrast agents for multimodal imaging of the cell-surface receptors for vascular endothelial growth factor (VEGF). These receptors have a key role in angiogenesis and are important targets for drug development. Our probes are based on a single-chain recombinant VEGF expressed with a cysteine-containing tag(More)
OBJECTIVE To develop a novel microbubble (MB) ultrasound contrast agent covalently coupled to a recombinant single-chain vascular endothelial growth factor construct (scVEGF) through uniform site-specific conjugation for ultrasound imaging of tumor angiogenesis. METHODS Ligand conjugation to maleimide-bearing MB by thioether bonding was first validated(More)
Tumor neovasculature is a potential but, until very recently, unexplored target for boron neutron capture therapy (BNCT) of cancer. In the present report, we describe the construction of a vascular endothelial growth factor (VEGF)-containing bioconjugate that potentially could be used to target up-regulated VEGF receptors (VEGFR), which are overexpressed on(More)
UNLABELLED Angiogenesis plays a central role in the pathogenesis of chronic inflammatory disorders. Vascular endothelial growth factor (VEGF) and its receptors are the most important regulators of angiogenesis. We wished to determine whether labeled forms of single-chain VEGF (scVEGF) could be used to image VEGF receptors in a well-characterized model of(More)
UNLABELLED Direct radiolabeling of proteins can result in the loss of targeting activity, requires highly customized procedures, and yields heterogeneous products. Here we describe a novel imaging complex comprised of a standardized (99m)Tc-radiolabeled adapter protein noncovalently bound to a "Docking tag" fused to a "Targeting protein". The assembly of(More)
INTRODUCTION VEGF receptors play a key role in angiogenesis and are important targets for several approved and many experimental drugs. Imaging of VEGF receptor expression in malignant tumors would provide important information, which can influence patient management. The aim of this study was the development of an easy-to-label positron-emitting tracer for(More)
Developing tissue engineering scaffolds with immobilized growth factors requires facile and reliable methods for the covalent attachment of functionally active proteins. We describe here a new approach to immobilize recombinant proteins based on expression of the protein of interest with a 15-aa long fusion tag (Cys-tag), which avails a free sulfhydryl(More)
Vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) drive angiogenesis, and several VEGFR inhibitors are already approved for use as single agents or in combination with chemotherapy. Although there is a clear benefit with these drugs in a variety of tumors, the clinical response varies markedly among individuals. Therefore, there is a need(More)
UNLABELLED Several drugs targeting vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) are approved for cancer treatment. However, these drugs induce relatively modest and frequently unpredictable tumor responses. In this work, we explored whether noninvasive imaging of VEGFR, a direct target of antiangiogenic drugs, can provide real-time(More)
We demonstrate the feasibility of fluorescence imaging of deeply seated tumors using mice injected with an angiogenesis tracer, a vascular endothelial growth factor conjugated with the infrared dye cyanine 7 (VEGF/Cy7). Our optical-only imaging reconstruction method separately estimates the target depth, and then applies this information to reconstruct(More)