#### Filter Results:

#### Publication Year

1985

2012

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

We give, over a finite field F q , explicit factorizations into a product of irreducible polynomials, of the cyclotomic polynomials of order 3 · 2 n , the Dickson polynomials of the first kind of order 3 · 2 n and the Dickson polynomials of the second kind of order 3 · 2 n − 1.

We develop a matrix approach to compute a certain sum of Gauss sums which arises in the study of weights of irreducible codes. A lower bound on the minimum weight of certain irreducible codes is given.

Reversed Dickson polynomials over finite fields are obtained from Dickson polynomials D n (x, a) over finite fields by reversing the roles of the indeterminate x and the parameter a. We study reversed Dickson polynomials with emphasis on their permutational properties over finite fields. We show that reversed Dickson permutation polynomials (RDPPs) are… (More)

Triple arrays are a class of designs introduced by Agrawal in 1966 for two-way elimination of heterogeneity in experiments. In this paper we investigate their existence and their connection to other classes of designs, including balanced incomplete block designs and balanced grids.