Joseph L Thorman

  • Citations Per Year
Learn More
Titanium porphyrin hydrazido complexes (TTP)Ti = NNR2 (TTP = meso-tetra-p-tolylporphyrinato dianion; R = Me (1), Ph (2)) were synthesized by treatment of (TTP)TiCl2 with 1,1-disubstituted hydrazines H2NNR2 (R = Me, Ph) in the presence of piperdine. The nucleophilic character of the hydrazido moiety was demonstrated in the reactions of complexes 1 and 2 with(More)
The mechanism of olefin substitution at palladium(0) has been studied, and the results provide unique insights into the fundamental reactivity of electron-rich late transition metals. A systematic series of bathocuproine-palladium(0) complexes bearing trans-beta-nitrostyrene ligands (ns(X) = X-C(6)H(4)CH=CHNO(2); X = OCH(3), CH(3), H, Br, CF(3)),(More)
Ligand substitution reactions are ubiquitous in transition-metal chemistry and catalysis. Investigation of ligand substitution reactions for a series of electron-rich palladium(0)-olefin complexes, (bathocuproine)Pd(nitrostyrene) reveals an unprecedented mechanism in which the metal serves as the nucleophilic partner in an "associative" substitution pathway.
The zirconium and hafnium imido metalloporphyrin complexes (TTP)M = NArtPr (TTP = meso-5,10,15,20-tetra-p-tolylporphyrinato dianion; M = Zr (1), Hf; AriPr = 2,6-diisopropylphenyl) were used to mediate addition reactions of carbonyl species and metathesis of nitroso compounds. The imido complexes react in a stepwise manner in the presence of 2 equiv of(More)
Atom and group transfer reactions were found to occur between heterocumulenes and (TTP)Ti(eta 2-3-hexyne), 1 (TTP = meso-5,10,15,20-tetra-p-tolylporphyrinato dianion). The imido derivatives (TTP)Ti=NR (R = iPr, 2; tBu, 3) were produced upon treatment of complex 1 with iPrN=C=NiPr, iPrNCO, or tBuNCO. Reactions between complex 1 and CS2, tBuNCS, or tBuNCSe(More)
  • 1