Learn More
Within the first 5 min after a sudden relief from glucose limitation, Saccharomyces cerevisiae exhibited fast changes of intracellular metabolite levels and a major transcriptional reprogramming. Integration of transcriptome and metabolome data revealed tight relationships between the changes at these two levels. Transcriptome as well as metabolite changes(More)
A mathematical model describing nitrification (nitritification plus nitratification) and anaerobic ammonium oxidation (ANAMMOX) combined in a biofilm reactor was developed. Based on this model, a previously proposed one-reactor completely autotrophic ammonium removal over nitrite (CANON) process was evaluated for its temperature dependency and behaviour(More)
A mathematical model for nitrification and anaerobic ammonium oxidation (ANAMMOX) processes in a single biofilm reactor (CANON) was developed. This model describes completely autotrophic conversion of ammonium to dinitrogen gas. Aerobic ammonium and nitrite oxidation were modeled together with ANAMMOX. The sensitivity of kinetic constants and biofilm and(More)
An integrated approach is used to develop a rapid sampling strategy for the quantitative analysis of in vivo kinetic behavior based on measured concentrations of intracellular metabolites in Saccharomyces cerevisiae. Emphasis is laid on small sample sizes during sampling and analysis. Subsecond residence times are accomplished by minimizing the dead volume(More)
In the aerobic phase of the biological phosphorus removal process, poly-beta-hydroxybutyrate, produced during anaerobic conditions, is used for cell growth, phosphate uptake, and glycogen formation. A metabolic model of this process has been developed. The yields for growth, polyphosphate and glycogen formation are quantified using the coupling of all these(More)
In the anaerobic phase of a biological phosphorus removal process, acetate is taken up and converted to PHB utilizing both energy generated in the degradation of polyphosphate to phosphate, which is released, and energy generated in the conversion of glycogen to poly-beta-hydroxy butyrate (PHB). The phosphate/acetate ratio cannot be considered a metabolic(More)
A systematic mathematical procedure capable of detecting the presence of a gross error in the measurements and of reconciling connected data sets by using the maximum likelihood principle is applied to the biomass composition data of yeast. The biomass composition of Saccharomyces cerevisiae grown in a chemostat under glucose limitation was analyzed for its(More)
The removal of phosphorus from wastewater is already widely applied. In many cases use is made of micro organisms capable of accumulating phosphorus as polyphosphate inside the cell. The main characteristic providing the competitive advantage to these polyphosphate accumulating bacteria is the capability to use polyphosphate, in the absence of external(More)
Accurate determination of intracellular metab-olite levels requires reliable, reproducible techniques for sampling and sample treatment. Quenching in 60% (v/v) methanol at-40°C is currently the standard method for sub-second arrest of metabolic activity in microbial meta-bolomics but there have been contradictory reports in the literature on whether leakage(More)
BACKGROUND Gene expression is regulated through a complex interplay of different transcription factors (TFs) which can enhance or inhibit gene transcription. ArcA is a global regulator that regulates genes involved in different metabolic pathways, while IclR as a local regulator, controls the transcription of the glyoxylate pathway genes of the aceBAK(More)