Joseph J. Biernacki

Learn More
A well-developed classical theory is available for constant-voltage electrical field flow fractionation (EFFF). Recent experimental research, however, has demonstrated that pulsed fields may enhance retention in some cases. A generalized mathematical approach is presented for the prediction of retention ratios for any field type, pulsed or constant. The(More)
In electrical field flow fractionation (EFFF or ElFFF), an electric potential is applied across a narrow gap filled with a weak electrolyte fluid. Charge buildup at the two poles (electrodes) and the formation of an electric double layer shields the channel, making the effective field in the bulk fluid very weak. Recent computational research suggests that(More)
Recent and earlier models of electrical field flow fractionation (ELFFF) have assumed that the electric field within the fluid domain is governed by Laplace's equation. This assumption results in a linear potential and a spatially constant field across the channel and is generally true for very dilute systems and relatively high effective potentials.(More)
  • 1