#### Filter Results:

- Full text PDF available (18)

#### Publication Year

1972

2017

- This year (2)
- Last 5 years (9)
- Last 10 years (20)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

- Phay J Ho, R Panfili, S L Haan, J H Eberly
- Physical review letters
- 2005

We introduce a unified and simplified theory of atomic double ionization. Our results show that at high laser intensities (I>/=10(14) W/cm(2)) purely classical correlation is strong enough to account for all of the main features observed in experiments to date.

- R Panfili, S L Haan, J H Eberly
- Physical review letters
- 2002

We use classical simulations to analyze the dynamics of nonsequential double-electron short-pulse photoionization. We utilize a microcanonical ensemble of 10(5) two-electron "trajectories," a number large enough to provide large subensembles and even sub-subensembles associated with double ionization. We focus on key events in the final doubly ionized… (More)

We find an algebraic formula for the N -partite concurrence of N qubits in an X matrix. X matrices are density matrices whose only nonzero elements are diagonal or antidiagonal when written in an orthonormal basis. We use our formula to study the dynamics of the N -partite entanglement of N remote qubits in generalized N -party Greenberger-Horne-Zeilinger… (More)

- S L Haan, L Breen, A Karim, J H Eberly
- Physical review letters
- 2006

Ensembles of 400,000 two-electron trajectories in three space dimensions are used with Newtonian equations of motion to track atomic double ionization under very strong laser fields. We report a variable time lag between e-e collision and double ionization, and find that the time lag plays a key role in the emergence directions of the electrons. These are… (More)

We compare quantum mechanical and fully classical treatments of electron dynamics accompanying strong field double ionization. The major features seen in quantum mechanical simulations, including the double-ionization jets, are reproduced when using a classical ensemble of two-particle trajectories.

- J. H. Eberly
- 2002

We undertake a pure-state analysis of a noise-dominated quantum event, namely spontaneous photon emission by an excited atom. While pure, the final state is nonseparably entangled. We calculate the participation ratio that provides a measure of the nonseparability, in the context of Schmidt-type analysis. The Schmidt modes serve as pairwise ‘‘pointer’’… (More)

- Phay J Ho, J H Eberly
- Physical review letters
- 2005

We use classical electron ensembles and the aligned-electron approximation to examine the effect of laser pulse duration on the dynamics of strong-field double ionization. We cover the range of intensities 10(14)-10(16) W/cm2 for the laser wavelength 780 nm. The classical scenario suggests that the highest rate of recollision occurs early in the pulse and… (More)

- J Durnin, J J Miceli, J H Eberly
- Optics letters
- 1988

- Y Lin, W Seka, J H Eberly, H Huang, D L Brown
- Applied optics
- 1992

We report on an experimental characterization of Bessel beams with finite apertures. We show that real Bessel beams can be generated with intensity profiles that closely resemble the ideal J(0)(2) transverseintensity distribution of Bessel beams. We also show interferometrically that these beams have planar phase fronts with pi-phase shifts from one Bessel… (More)

- Xu Wang, J H Eberly
- Physical review letters
- 2010

The degree of elliptical polarization of intense short laser pulses is shown to be related to the timing of strong-field nonsequential double ionization. Higher ellipticity is predicted to force the initiation of double ionization into a narrower time window, and this "pins" the ionizing field strength in an unexpected way, leading to the first… (More)