Joseph F Sambrook

Learn More
Two glucose-regulated proteins, GRP78 and GRP94, are major constituents of the endoplasmic reticulum (ER) of mammalian cells. These proteins are synthesized constitutively in detectable amounts under normal growth conditions; they can also be induced under a variety of conditions of stress including glucose starvation and treatment with drugs that inhibit(More)
In the cell, as in vitro, the final conformation of a protein is determined by its amino-acid sequence. But whereas some isolated proteins can be denatured and refolded in vitro in the absence of other macromolecular cellular components, folding and assembly of polypeptides in vivo involves other proteins, many of which belong to families that have been(More)
In eukaryotic cells, the accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers a signaling pathway from the ER to the nucleus. Several yeast mutants defective in this pathway map to the ERN1 gene, which protects cells from lethal consequences of stress by signaling for increased expression of BiP and other ER proteins. ERN1 encodes a(More)
The hemagglutinin of influenza virus is synthesized as a monomeric subunit that is cotranslationally translocated across the membrane of the rough endoplasmic reticulum. We show that folding and assembly of hemagglutinin monomers into trimeric structures takes approximately 7-10 min and is completed before the protein leaves the endoplasmic reticulum.(More)
The KAR2 gene of Saccharomyces cerevisiae codes for an essential chaperone protein (BiP) that is localized in the lumen of the endoplasmic reticulum (ER). The high basal rate of transcription of KAR2 is increased transiently by heat shock: prolonged induction occurs when unfolded proteins accumulate in the ER. Three cis-acting elements in the KAR2 promoter(More)
We have used affinity panning of libraries of bacteriophages that display random octapeptide or dodecapeptide sequences at the N-terminus of the adsorption protein (pIII) to characterize peptides that bind to the endoplasmic reticulum chaperone BiP and to develop a scoring system that predicts potential BiP-binding sequences in naturally occurring(More)
We have studied the binding of synthetic peptides to three hsp70 molecular chaperones, DnaK, BiP, and hsc70, as a model for the interaction of hsp70 proteins with unfolded regions of target polypeptides. We measured the ability of 53 peptides to inhibit the formation of complexes between the hsp70 proteins and denatured lactalbumin. Peptides that bound with(More)
The endoplasmic reticulum (ER) of eukaryotic cells contains an abundant 78,000-Da protein (BiP) that is involved in the translocation, folding, and assembly of secretory and transmembrane proteins. In the yeast Saccharomyces cerevisiae, as in mammalian cells, BiP mRNA is synthesized at a high basal rate and is further induced by the presence of increased(More)
The molecular chaperone BiP purified from bovine liver (bBiP) exhibits a low basal level of ATPase activity that can be stimulated 3-6-fold by synthetic peptides (Flynn, G. C., Chappell, T. G., and Rothman, J. E. (1989) Science 245, 385-390). By contrast, recombinant murine BiP (rBiP) purified to homogeneity following expression in Escherichia coli exhibits(More)
BACKGROUND The ATM gene encoding a putative protein kinase is mutated in ataxia-telangiectasia (A-T), an autosomal recessive disorder with a predisposition for cancer. Studies of A-T families suggest that female heterozygotes have an increased risk of breast cancer compared with noncarriers. However, neither linkage analyses nor mutation studies have(More)