Joseph F. Cotten

Learn More
The tandem pore domain K channel family mediates background K currents present in excitable cells. Currents passed by certain members of the family are enhanced by volatile anesthetics, thus suggesting a novel mechanism of anesthesia. The newest member of the family, termed TRESK (TWIK [tandem pore domain weak inward rectifying channel]-related spinal cord(More)
UNLABELLED TRESK (TWIK-related spinal cord K+ channel) is the most recently characterized member of the tandem-pore domain potassium channel (K2P) family. Human TRESK is potently activated by halothane, isoflurane, sevoflurane, and desflurane, making it the most sensitive volatile anesthetic-activated K2P channel yet described. Herein, we compare the(More)
Arginine 347 in the sixth transmembrane domain of cystic fibrosis transmembrane conductance regulator (CFTR) is a site of four cystic fibrosis-associated mutations. To better understand the function of Arg-347 and to learn how mutations at this site disrupt channel activity, we mutated Arg-347 to Asp, Cys, Glu, His, Leu, or Lys and examined single-channel(More)
BACKGROUND Although accumulating evidence suggests that arousal pathways in the brain play important roles in emergence from general anesthesia, the roles of monoaminergic arousal circuits are unclear. In this study, the authors tested the hypothesis that methylphenidate (an inhibitor of dopamine and norepinephrine transporters) induces emergence from(More)
The cystic fibrosis transmembrane conductance regulator (CFTR) contains multiple membrane spanning sequences that form a Cl- channel pore and cytosolic domains that control the opening and closing of the channel. The fourth intracellular loop (ICL4), which connects the tenth and eleventh transmembrane spans, has a primary sequence that is highly conserved(More)
The cytosolic nucleotide binding domains of cystic fibrosis transmembrane conductance regulator (NBD1 and NBD2) mediate ATP-dependent opening and closing of the Cl- channel pore. To learn more about NBD structure and function, we introduced a cysteine residue into the Walker A motif or the LSGGQ motif of each NBD and examined modification by(More)
The TWIK-related, Acid Sensing K (TASK-2; KCNK5) potassium channel is a member of the tandem pore (2P) family of potassium channels and mediates an alkaline pH-activated, acid pH-inhibited, outward-rectified potassium conductance. In previous work, we demonstrated TASK-2 protein expression in newborn rat cerebellar granule neurons (CGNs). In this study, we(More)
TASK-3 (KCNK9) tandem-pore potassium channels provide a volatile anesthetic-activated and Gα(q) protein- and acidic pH-inhibited potassium conductance important in neuronal excitability. Met-159 of TASK-3 is essential for anesthetic activation and may contribute to the TASK-3 anesthetic binding site(s). We hypothesized that covalent occupancy of an(More)
BACKGROUND Methoxycarbonyl etomidate is the prototypical soft etomidate analog. Because it has relatively low potency and is extremely rapidly metabolized, large quantities must be infused to maintain hypnosis. Consequently with prolonged infusion, metabolite reaches sufficient concentrations to delay recovery. Dimethyl-methoxycarbonyl metomidate (DMMM) and(More)
BACKGROUND TASK-1 and TASK-3 tandem pore potassium channel subunits provide a constitutive acidic pH- and hypoxia-inhibited potassium conductance. TASK channels are expressed in a number of tissues involved in regulation of breathing, and the TASK-1/TASK-3 heterodimer provides the predominant hypoxia-sensitive potassium conductance in carotid body type 1(More)