Learn More
BACKGROUND In previous studies, it has been shown that intravenous lactate therapy can improve brain neurochemistry, adenosine triphosphate (ATP) generation and outcome after traumatic brain injury (TBI) in rats. In this study, we examined: (1) four L-lactate concentrations to determine the optimal therapeutic dose post TBI in terms of cognitive function;(More)
OBJECT Currently, there are no good clinical tools to identify the onset of secondary brain injury and/or hypoxia after traumatic brain injury (TBI). The aim of this study was to evaluate simultaneously early changes of cerebral metabolism, acid-base homeostasis, and oxygenation, as well as their interrelationship after TBI and arterial hypoxia. METHODS(More)
Methods for implatation of cranial windows for the direct observations of the pial microcirculation in experimental animals are described in detail. These techniques are suitable for both acute experiments in anesthetized animals and chronic implantation permitting several months of observation in awake animals. Experience over several years shows that(More)
Changes in the redox level of cytochrome a and in the amount of oxygenated hemoglobin were measured by dual wavelength reflectance spectrophotometry in the intact cerebral cortex of cats (cerveau isolé preparation) and in unanesthetized rabbits with chronically implanted cranial windows. Increases in inspired oxygen were accompanied by an increase in the(More)
OBJECT In the current study, the authors examined the effects of hyperbaric O2 (HBO) following fluid-percussion brain injury and its implications on brain tissue oxygenation (PO2) and O2 consumption (VO2) and mitochondrial function (redox potential). METHODS Cerebral tissue PO2 was measured following induction of a lateral fluid-percussion brain injury in(More)
OBJECT Hyperbaric oxygen (HBO2) has been shown to improve outcome after severe traumatic brain injury, but its underlying mechanisms are unknown. Following lateral fluid-percussion injury (FPI), the authors tested the effects of HBO2 treatment as well as enhanced normobaric oxygenation on mitochondrial function, as measured by both cognitive recovery and(More)
Traumatic brain injury (TBI) triggers a complex pathophysiological cascade, leading to cell death. A major factor in the pathogenesis of TBI is neuronal overloading with calcium, causing the opening of mitochondrial permeability transition pores (MPTP), which consequently inhibit normal mitochondrial function. The immunosuppressant Cyclosporin A (CsA) has(More)
Chronic systemic hypoxia (SH) enhances myocardial ischemic tolerance in mammals. We studied the delayed cardioprotection caused by acute SH and associated signaling mechanism. Conscious adult male mice were exposed to one or two cycles of hypoxia (H; 10% O(2)) or normoxia (21% O(2)) for various durations (30 min, 2 h, 4 h) followed by 24 h of reoxygenation.(More)
The frequent occurrence of acute death from pulmonary failure in experimental head injury studies on Sprague-Dawley rats prompted an investigation into the manner in which acute neurogenic pulmonary edema develops in these animals as a result of an applied fluid pressure pulse to the cerebral hemispheres. Studies were performed in adult animals using(More)
OBJECTIVE Failure of energy metabolism after traumatic brain injury may be a major factor limiting outcome. Although glucose is the primary metabolic substrate in the healthy brain, the well documented surge in tissue lactate after traumatic brain injury suggests that lactate may provide an energy need that cannot be met by glucose. We hypothesized,(More)