Learn More
The contribution of the amygdala and hippocampus to the acquisition of conditioned fear responses to a cue (a tone paired with footshock) and to context (background stimuli continuously present in the apparatus in which tone-shock pairings occurred) was examined in rats. In unoperated controls, responses to the cue conditioned faster and were more resistant(More)
Understanding how fears are acquired is an important step in translating basic research to the treatment of fear-related disorders. However, understanding how learned fears are diminished may be even more valuable. We explored the neural mechanisms of fear extinction in humans. Studies of extinction in nonhuman animals have focused on two interconnected(More)
Although much has been learned about the neurobiological mechanisms underlying Pavlovian fear conditioning at the systems and cellular levels, relatively little is known about the molecular mechanisms underlying fear memory consolidation. The present experiments evaluated the role of the extracellular signal-regulated kinase/mitogen-activated protein kinase(More)
Previous studies have shown that long-term potentiation (LTP) can be induced in the lateral nucleus of the amygdala (LA) after stimulation of central auditory pathways and that auditory fear conditioning modifies neural activity in the LA in a manner similar to LTP. The present experiments examined whether intra-LA administration of inhibitors of protein(More)
Dysregulation of the fear system is at the core of many psychiatric disorders. Much progress has been made in uncovering the neural basis of fear learning through studies in which associative emotional memories are formed by pairing an initially neutral stimulus (conditioned stimulus, CS; e.g., a tone) to an unconditioned stimulus (US; e.g., a shock).(More)
The lateral nucleus of the amygdala (LA) is the first site in the amygdala where the plasticity underlying fear conditioning could occur. We simultaneously recorded from multiple LA neurons in freely moving rats during fear conditioning trials in which tones were paired with foot shocks. Conditioning significantly increased the magnitude of tone-elicited(More)
them a remarkable illustration of the power of the evolutionary process to create varied biological types from a single ancestral form. Moreover, their close phylogenetic proximity to humans makes them invaluable subjects for comparative study. Presently, the power of this comparative framework is being realized in the study of primate genomics and(More)
Echoplanar functional magnetic resonance imaging (fMRI) was used in normal human subjects to investigate the role of the amygdala in conditioned fear acquisition and extinction. A simple discrimination procedure was employed in which activation to a visual cue predicting shock (CS+) was compared with activation to another cue presented alone (CS-). CS+ and(More)