Learn More
GABARAP recognizes and binds the gamma2 subunit of the GABA(A) receptor, interacts with microtubules and the N-ethyl maleimide sensitive factor, and is proposed to function in GABA(A) receptor trafficking and postsynaptic localization. We have determined the crystal structure of human GABARAP at 1.6 A resolution. The structure comprises an N-terminal(More)
Cancer cells exhibit several unique metabolic phenotypes that are critical for cell growth and proliferation. Specifically, they overexpress the M2 isoform of the tightly regulated enzyme pyruvate kinase (PKM2), which controls glycolytic flux, and are highly dependent on de novo biosynthesis of serine and glycine. Here we describe a new rheostat-like(More)
Here we report a highly conserved new binding site located at the interface between the protease and helicase domains of the hepatitis C virus (HCV) NS3 protein. Using a chemical lead, identified by fragment screening and structure-guided design, we demonstrate that this site has a regulatory function on the protease activity via an allosteric mechanism. We(More)
The clustering of neurotransmitter receptors at the postsynaptic terminals is a critical requirement for efficient neurotransmission and neuronal communication. This process is facilitated by adaptor proteins, which bridge the postsynaptic receptors and the underlying cytoskeleton. One such molecule, the GABAA receptor-associated protein, GABARAP, was(More)
Soluble adenylate cyclases catalyse the synthesis of the second messenger cAMP through the cyclisation of ATP and are the only known enzymes to be directly activated by bicarbonate. Here, we report the first crystal structure of the human enzyme that reveals a pseudosymmetrical arrangement of two catalytic domains to produce a single competent active site(More)
  • 1