Joseph D. Hernandez

Learn More
Regulated glycosylation controls T cell processes, including activation, differentiation and homing by creating or masking ligands for endogenous lectins. Here we show that stimuli promoting T helper type 1 (TH1), TH2 or interleukin 17-producing T helper (TH-17) differentiation can differentially regulate the glycosylation pattern of T helper cells and(More)
BACKGROUND Activation of Toll-like receptors (TLRs) induces inflammatory responses involved in immunity to pathogens and autoimmune pathogenesis, such as in patients with systemic lupus erythematosus (SLE). Although TLRs are differentially expressed across the immune system, a comprehensive analysis of how multiple immune cell subsets respond in a(More)
BMP-7, a member of the bone morphogenic protein subfamily (BMPs) of the transforming growth factor-beta superfamily of secreted growth factors, is abundantly expressed in the fetal kidney. The precise role of this protein in renal physiology or pathology is unknown. A cDNA that encodes rat BMP-7 was cloned and used as a probe to localize BMP-7 mRNA(More)
Control of cell death is critical in eukaryotic development, immune system homeostasis, and control of tumorigenesis. The galectin family of lectins is implicated in all of these processes. Other families of molecules function as death receptors or death effectors, but galectins are uniquely capable of acting both extracellularly and intracellularly to(More)
Galectin-1 kills immature thymocytes and activated peripheral T cells by binding to glycans on T cell glycoproteins including CD7, CD45, and CD43. Although roles for CD7 and CD45 in regulating galectin-1-induced death have been described, the requirement for CD43 remains unknown. We describe a novel role for CD43 in galectin-1-induced death, and the effects(More)
Galectin-1, a mammalian lectin expressed in many tissues, induces death of diverse cell types, including lymphocytes and tumor cells. The galectin-1 T cell death pathway is novel and distinct from other death pathways, including those initiated by Fas and corticosteroids. We have found that galectin-1 binding to human T cell lines triggered rapid(More)
Proliferation and migration are important biological responses of mesangial cells to injury. Platelet-derived growth factor (PDGF) is a prime candidate to mediate these responses in glomerular disease. PDGF and its receptor (PDGFR) are upregulated in the mesangium during glomerular injury. We have recently shown that PDGF activates phosphatidylinositol(More)
CD45 is dynamically repositioned within lipid rafts and the immune synapse during T cell activation, although the molecular consequences of CD45 repositioning remain unclear. In this study we examine the role of CD45 membrane compartmentalization in regulating murine T cell activation. We find that raft-localized CD45 antagonizes IL-2 production by opposing(More)
Mast cells (MCs) influence intercellular communication during inflammation by secreting cytoplasmic granules that contain diverse mediators. Here, we have demonstrated that MCs decode different activation stimuli into spatially and temporally distinct patterns of granule secretion. Certain signals, including substance P, the complement anaphylatoxins C3a(More)
BACKGROUND Shiga toxin 1 (Stx1) is a causative agent in hemolytic uremic syndrome (HUS). Its receptor, the glycosphingolipid globotriaosylceramide (Gb3), is expressed on cultured human endothelial and mesangial cells. Mesangial cell injury in HUS ranges from mild cellular edema to severe mesangiolysis and eventual glomerulosclerosis. We hypothesized that,(More)