Joseph D Dirocco

Learn More
OBJECTIVES To review the mechanism of dynamic alveolar mechanics (i.e., the dynamic change in alveolar size and shape during ventilation) in both the normal and acutely injured lung; to investigate the alteration in alveolar mechanics secondary to acute lung injury as a mechanism of ventilator-induced lung injury (VILI); and to examine the hypothesis that(More)
INTRODUCTION One potential mechanism of ventilator-induced lung injury (VILI) is due to shear stresses associated with alveolar instability (recruitment/derecruitment). It has been postulated that the optimal combination of tidal volume (Vt) and positive end-expiratory pressure (PEEP) stabilizes alveoli, thus diminishing recruitment/derecruitment and(More)
The mechanical derangements in the acutely injured lung have long been ascribed, in large part, to altered mechanical function at the alveolar level. This has not been directly demonstrated, however, so we investigated the issue in a rat model of overinflation injury. After thoracotomy, rats were mechanically ventilated with either 1) high tidal volume (Vt)(More)
Inappropriate mechanical ventilation in patients with acute respiratory distress syndrome can lead to ventilator-induced lung injury (VILI) and increase the morbidity and mortality. Reopening collapsed lung units may significantly reduce VILI, but the mechanisms governing lung recruitment are unclear. We thus investigated the dynamics of lung recruitment at(More)
Cardiopulmonary bypass (CPB) causes a systemic inflammatory response syndrome (SIRS), which can progress to an acute lung inflammation known as postperfusion syndrome. We developed a two-phase hypothesis: first, that SIRS, as indicated by elevated cytokines post-CPB, would be correlated with postoperative pulmonary dysfunction (Phase I), and second, that(More)
To determine whether individual alveolar recruitment/derecruitment (R/D) is correlated with the lower and upper inflections points on the inflation and deflation limb of the whole-lung pressure-volume (P-V) curve. Prospective experimental study in an animal research laboratory. Five anesthetized rats subjected to saline-lavage lung injury. Subpleural(More)
In recent years, there has been considerable interest in developing technology as well as techniques that could widen the therapeutic horizons of endoscopy. Rectal prolapse, a benign localized condition causing considerable morbidity, could be an excellent focus for new endoscopic therapies. The aim of this study was to assess the feasibility and safety of(More)
BACKGROUND Ventilator strategies that maintain an "open lung" have shown promise in treating hypoxemic patients. We compared three "open lung" strategies with standard of care low tidal volume ventilation and hypothesized that each would diminish physiologic and histopathologic evidence of ventilator induced lung injury (VILI). MATERIALS AND METHODS Acute(More)
BACKGROUND Wood smoke inhalation causes severe ventilation and oxygenation abnormalities. We hypothesized that smoke inhalation would cause lung injury by 2 mechanisms: (1) direct tissue injury by the toxic chemicals in the smoke and (2) a mechanical shear-stress injury caused by alveolar instability (ie, alveolar recruitment/derecruitment). We further(More)
To determine whether pathological alterations in alveolar mechanics (i.e., the dynamic change in alveolar size and shape with ventilation) at a similar level of lung injury vary depending on the cause of injury. Prospective controlled animal study in a university laboratory. 30 male Sprague-Dawley rats (300–550 g). Rats were separated into one of four lung(More)