Joseph D DiRocco

Learn More
The mechanical derangements in the acutely injured lung have long been ascribed, in large part, to altered mechanical function at the alveolar level. This has not been directly demonstrated, however, so we investigated the issue in a rat model of overinflation injury. After thoracotomy, rats were mechanically ventilated with either 1) high tidal volume (Vt)(More)
INTRODUCTION One potential mechanism of ventilator-induced lung injury (VILI) is due to shear stresses associated with alveolar instability (recruitment/derecruitment). It has been postulated that the optimal combination of tidal volume (Vt) and positive end-expiratory pressure (PEEP) stabilizes alveoli, thus diminishing recruitment/derecruitment and(More)
BACKGROUND Septic shock is often associated with acute respiratory distress syndrome, a serious clinical problem exacerbated by improper mechanical ventilation. Ventilator-induced lung injury (VILI) can exacerbate the lung injury caused by acute respiratory distress syndrome, significantly increasing the morbidity and mortality. In this study, we asked the(More)
Inappropriate mechanical ventilation in patients with acute respiratory distress syndrome can lead to ventilator-induced lung injury (VILI) and increase the morbidity and mortality. Reopening collapsed lung units may significantly reduce VILI, but the mechanisms governing lung recruitment are unclear. We thus investigated the dynamics of lung recruitment at(More)
  • 1