Learn More
This article compares and contrasts the operations of the robotic manipulators on the Mars Phoenix Lander and Mars Exploration Rovers (MERs), Spirit and Opportunity. Unlike the MERs, the Phoenix Mars Lander stays in one spot at a particular geographic location on the Martian surface with exploration emphasis on vertical mobility sampling. In this article(More)
— In January 2004, NASA's twin Mars Exploration Rovers (MERs), Spirit and Opportunity, began searching the surface of Mars for evidence of past water activity. In order to localize and approach scientifically interesting targets, the rovers employ an on-board navigation system. Given the la-tency in sending commands from Earth to the Martian rovers (and in(More)
We present an interpolation-based planning and replanning algorithm that is able to produce direct, low-cost paths through three-dimensional environments. Our algorithm builds upon recent advances in 2D grid-based path planning and extends these techniques to 3D grids. It is often the case for robots navigating in full three-dimensional environments that(More)
In January 2004, NASA's twin Mars Exploration Rovers (MERs), Spirit and Opportunity , began searching the surface of Mars for evidence of past water activity. In order to localize and approach scientifically interesting targets, the rovers employ an on-board navigation system. Given the latency in sending commands from Earth to the Martian rovers (and in(More)
[1] The Mars Phoenix Lander was equipped with a 2.4 m Robotic Arm (RA) with an Icy Soil Acquisition Device capable of excavating trenches in soil deposits, grooming hard icy soil surfaces with a scraper blade, and acquiring icy soil samples using a rasp tool. A camera capable of imaging the scoop interior and a thermal and electrical conductivity probe were(More)
The need for reliable maps of subterranean spaces too hazardous for humans to occupy has motivated the development of robotic mapping tools. For such systems to be fully autonomous, they must be able to deal with all varieties of subterranean environments, including those containing loops. This paper presents an approach for an autonomous mobile robot to(More)
Planetary surface science operations performed by robotic space systems frequently require pointing cameras at various objects and moving a robotic arm end effector tool toward specific targets. Earlier NASA Mars Exploration Rovers did not have the ability to compute actual coordinates for given object coordinate frame names and had to be provided with(More)