Joseph C. Fogarty

Learn More
Molecular dynamics modeling has provided a powerful tool for simulating and understanding diverse systems – ranging from materials processes to biophysical phenomena. Parallel formulations of these methods have been shown to be among the most scalable scientific computing applications. Many instances of this class of methods rely on a static bond structure(More)
We report our study of a silica-water interface using reactive molecular dynamics. This first-of-its-kind simulation achieves length and time scales required to investigate the detailed chemistry of the system. Our molecular dynamics approach is based on the ReaxFF force field of van Duin et al. [J. Phys. Chem. A 107, 3803 (2003)]. The specific ReaxFF(More)
We have developed an automated parameter optimization software framework (ParOpt) that implements the Nelder-Mead simplex algorithm and applied it to a coarse-grained polarizable water model. The model employs a tabulated, modified Morse potential with decoupled short- and long-range interactions incorporating four water molecules per interaction site.(More)
Molecular Simulation (MS) is a powerful tool for studying physical/chemical features of large systems and has seen applications in many scientific and engineering domains. During the simulation process, the experiments generate a very large number of atoms and intend to observe their spatial and temporal relationships for scientific analysis. The sheer data(More)
  • 1