Learn More
Entry of Ca through voltage-dependent Ca channels is an important regulator of the function of smooth muscle, cardiac muscle, and neurons. Although Ca channels have been extensively studied since the first descriptions of Ca action potentials (P. Fatt and B. Katz. J. Physiol. Lond. 120: 171-204, 1953), the permeation rate of Ca through single Ca channels(More)
High resolution measurements of the current through individual ion channels activated by acetylcholine (AChR- channels) in frog muscle have shown that these currents are discrete pulse-like events with durations of a few milliseconds. Fluctuation and relaxation measurements of end-plate currents have led to the conclusion that the rate of channel opening(More)
Voltage-dependent Na+ channels are thought to sense membrane potential with fixed charges located within the membrane's electrical field. Measurement of open probability (Po) as a function of membrane potential gives a quantitative indication of the number of such charges that move through the field in opening the channel. We have used single-channel(More)
The relationship between Ca2+ release ("Ca2+ sparks") through ryanodine-sensitive Ca2+ release channels in the sarcoplasmic reticulum and KCa channels was examined in smooth muscle cells from rat cerebral arteries. Whole cell potassium currents at physiological membrane potentials (-40 mV) and intracellular Ca2+ were measured simultaneously, using the(More)
1. The blocking effects of Ba+ and H+ on the inward K current during anomalous rectification of the giant egg membrane of the starfish, Mediaster aequalis, were studied using voltage clamp techniques. 2. External Ba2+ at a low concentration (10--100 micron) suppresses the inward K current; the extent of suppression, expressed as the ratio of currents with(More)
Single Ca2+ channel and whole cell currents were measured in smooth muscle cells dissociated from resistance-sized (100-microns diameter) rat cerebral arteries. We sought to quantify the magnitude of Ca2+ channel currents and activity under the putative physiological conditions of these cells: 2 mM [Ca2+]o, steady depolarizations to potentials between -50(More)
Resistance arteries exist in a maintained contracted state from which they can dilate or constrict depending on need. In many cases, these arteries constrict to membrane depolarization and dilate to membrane hyperpolarization and Ca-channel blockers. We discuss recent information on the regulation of arterial smooth muscle voltage-dependent Ca channels by(More)
Real synaptic systems consist of a nonuniform population of synapses with a broad spectrum of probability and response distributions varying between synapses, and broad amplitude distributions of postsynaptic unitary responses within a given synapse. A common approach to such systems has been to assume identical synapses and recover apparent quantal(More)
The measurement of single ion channel kinetics is difficult when those channels exhibit subconductance events. When the kinetics are fast, and when the current magnitudes are small, as is the case for Na+, Ca2+, and some K+ channels, these difficulties can lead to serious errors in the estimation of channel kinetics. I present here a method, based on the(More)