Learn More
The sub-grid-scale parameterization of clouds is one of the weakest aspects of weather and climate modeling today, and the explicit simulation of clouds will be one of the next major achievements in numerical weather prediction. Research cloud models have been in development over the last 45 years and they continue to be an important tool for investigating(More)
A numerical scheme applicable to arbitrarily structured C-grids is presented for the nonlinear shallow-water equations. By discretizing the vector invariant form of the momentum equation, the relationship between the nonlinear Coriolis force and the potential vorticity flux can be used to guarantee that mass, velocity and potential vorticity evolve in a(More)
A C-grid staggering, in which the mass variable is stored at cell centers and the normal velocity component is stored at cell faces (or edges in two dimensions) is attractive for atmospheric modeling since it enables a relatively accurate representation of fast wave modes. However, the discretization of the Coriolis terms is non-trivial. For constant(More)
Herein, a summary of the authors' experiences with 36-h real-time explicit (4 km) convective forecasts with the Advanced Research Weather Research and Forecasting Model (WRF-ARW) during the 2003–05 spring and summer seasons is presented. These forecasts are compared to guidance obtained from the 12-km operational Eta Model, which employed convective(More)
  • 1