Joseph Azencot

  • Citations Per Year
Learn More
Tumor motion during irradiation reduces target coverage and increases dose to healthy tissues. Prediction of respiratory motion has the potential to substantially improve cancer radiation therapy. The respiratory motion is complex and its prediction is not a simple task, especially that breathing is controlled by the independent action of the diaphragm(More)
   Organ motion due to patient breathing introduces a technical challenge for dosimetry and lung tumor treatment by hadron therapy. Accurate dose distribution estimation requires patient-specific information on tumor position, size, and shape as well as information regarding the material density and stopping power of the media along the beam path. A new 4D(More)
Respiratory-induced organ motion is a technical challenge to nuclear imaging and to particle therapy dose calculations for lung cancer treatment in particular. Internal organ tissue displacements and deformations induced by breathing need to be taken into account when calculating Monte Carlo dose distributions or when performing tomographic reconstructions(More)
Organ motion, especially respiratory motion, is a technical challenge to radiation therapy planning and dosimetry. This motion induces displacements and deformation of the organ tissues within the irradiated region which need to be taken into account when simulating dose distribution during treatment. Finite element modeling (FEM) can provide a great(More)
  • 1