Learn More
We recently reported the discovery of a series of bioactive prostaglandin F2-like compounds (F2-isoprostanes) that are produced in vivo by free radical-catalyzed peroxidation of arachidonic acid independent of the cyclooxygenase enzyme. Inasmuch as phospholipids readily undergo peroxidation, we examined the possibility that F2-isoprostanes may be formed in(More)
Growth factors and tumor promoters have been shown to play a role in intestinal epithelial growth regulation and transformation. In this study, transforming growth factor-alpha (TGF alpha) and the tumor promoter, tetradecanoyl phorbol acetate (TPA), are shown to stimulate the production of eicosanoids by rat intestinal epithelial (RIE-1) cells in culture. A(More)
BACKGROUND Halothane can be reductively metabolized to free radical intermediates that may initiate lipid peroxidation. Hypoxia and phenobarbital pretreatment in Sprague-Dawley rats increases reductive metabolism of halothane. F(2)-isoprostanes, a novel measure of lipid peroxidation in vivo, were used to quantify halothane-induced lipid peroxidation in(More)
A dose of diquat below the amount injurious to selenium-replete animals causes lipid peroxidation and massive liver necrosis in selenium-deficient rats. The current study was undertaken to characterize the lipid peroxidation with respect to the liver injury and to correlate the presence of several selenoproteins with the protective effect of selenium. Lipid(More)
These studies examine the in vivo formation of a unique series of PGF2-like compounds (F2-isoprostanes) derived from free radical-catalyzed nonenzymatic peroxidation of arachidonic acid. We have previously shown that levels of these compounds increase up to 50-fold in rats administered CCl4. To understand further the formation of these compounds in vivo, we(More)
The isoprostanes (IsoPs) are bioactive prostaglandin-like compounds derived from the free-radical-catalyzed peroxidation of arachidonic acid in vitro and in vivo. IsoPs possessing either an F-type prostane ring (F2-IsoPs) or D/E-type prostane rings (D2/E2-IsoPs) are formed depending on whether IsoP endoperoxide intermediates undergo reduction or(More)
Free radicals are thought to play an important role in many types of tissue injury. Recently, we reported that a series of prostaglandin F2-like compounds (F2-isoprostanes) capable of exerting potent biological activity are produced in vivo by free radical-induced lipid peroxidation. Their formation is independent of the cyclooxygenase enzyme and has been(More)
BACKGROUND Selenium and glutathione have interrelated oxidant defense roles in vivo. Experiments were carried out to determine the effect of glutathione depletion in selenium-deficient rats. EXPERIMENTAL DESIGN Selenium-deficient and control rats were injected with phorone to deplete glutathione. Histologic assessment of liver and kidney injury was(More)
OBJECTIVE Free radical-induced oxidative stress with consequent lipid peroxidation and resultant tissue damage has been suggested as a potential mechanism of the pathogenesis of scleroderma. However, because reliable measurement of lipid peroxidation in vivo is difficult, it has not been possible to adequately examine this hypothesis. We have previously(More)