Learn More
Pathogenic diseases represent a major constraint to the growth and yield of cacao (Theobroma cacao L.). Ongoing research on model plant systems has revealed that defense responses are activated via signaling pathways mediated by endogenous signaling molecules such as salicylic acid, jasmonic acid and ethylene. Activation of plant defenses is associated with(More)
Theobroma cacao L., is a tree originated from the tropical rainforest of South America. It is one of the major cash crops for many tropical countries. T. cacao is mainly produced on smallholdings, providing resources for 14 million farmers. Disease resistance and T. cacao quality improvement are two important challenges for all actors of cocoa and chocolate(More)
The Arabidopsis cell wall-associated kinase (WAK) and WAK-like kinase (WAKL) family of receptor-like kinase genes encodes transmembrane proteins with a cytoplasmic serine/threonine kinase domain and an extracellular region containing epidermal growth factor-like repeats. Previous studies have suggested that some WAK members are involved in plant defense and(More)
The Arabidopsis thaliana NPR1 gene encodes a transcription coactivator (NPR1) that plays a major role in the mechanisms regulating plant defense response. After pathogen infection and in response to salicylic acid (SA) accumulation, NPR1 translocates from the cytoplasm into the nucleus where it interacts with other transcription factors resulting in(More)
Theobroma cacao L. plants over-expressing a cacao class I chitinase gene (TcChi1) under the control of a modified CaMV-35S promoter were obtained by Agrobacterium-mediated transformation of somatic embryo cotyledons. Southern blot analysis confirmed insertion of the transgene in eight independent lines. High levels of TcChi1 transgene expression in the(More)
Developmental expression of stress response genes in Theobroma cacao leaves and their response to Nep1 and a compatible infection by Phytophthora megakarya were studied. Ten genes were selected to represent genes involved in defense (TcCaf-1, TcGlu1,3, TcChiB, TcCou-1, and TcPer-1), gene regulation (TcWRKY-1 and TcORFX-1), cell wall development (TcCou-1,(More)
Arabidopsis non-expressor of PR1 (NPR1) is a transcription co-activator that plays a central role in regulating the transcriptional response to plant pathogens. The NPR family consists of NPR1 and five NPR1-like genes. The NPR1 paralog NPR3 has recently been shown to function as a receptor of the plant hormone salicylic acid and to mediate proteosomal(More)
  • 1