Joseph A. Phillips

Learn More
The conjugation of antitumor drugs to targeting reagents such as antibodies is a promising method that can increase the efficacy of chemotherapy and reduce the overall toxicity of the drugs. In this study, we covalently link the antitumor agent doxorubicin (Dox) to the DNA aptamer sgc8c, which was selected by the cell-SELEX method. In doing so, we expected(More)
Identifying cells associated with specific disease states is critically important for the early detection and diagnosis of cancer. To facilitate this task, molecular probes, which bind biomarkers that are either specifically or differentially expressed in diseased cells relative to healthy cells, provide a simple and effective method. This review focuses on(More)
Monitoring the location, distribution and long-term engraftment of administered cells is critical for demonstrating the success of a cell therapy. Among available imaging-based cell tracking tools, magnetic resonance imaging (MRI) is advantageous due to its noninvasiveness, deep penetration, and high spatial resolution. While tracking cells in preclinical(More)
Study of the density, spatial distribution, and molecular interactions of receptors on the cell membrane provides the knowledge required to understand cellular behavior and biological functions, as well as to discover, design, and screen novel therapeutic agents. However, the mapping of receptor distribution and the monitoring of ligand-receptor(More)
One of the greatest challenges in cell therapy is to minimally invasively deliver a large quantity of viable cells to a tissue of interest with high engraftment efficiency. Low and inefficient homing of systemically delivered mesenchymal stem cells (MSCs), for example, is thought to be a major limitation of existing MSC-based therapeutic approaches, caused(More)
This work describes the development and investigation of an aptamer modified microfluidic device that captures rare cells to achieve a rapid assay without pretreatment of cells. To accomplish this, aptamers are first immobilized on the surface of a poly(dimethylsiloxane) microchannel, followed by pumping a mixture of cells through the device. This process(More)
The ability to explore cell signalling and cell-to-cell communication is essential for understanding cell biology and developing effective therapeutics. However, it is not yet possible to monitor the interaction of cells with their environments in real time. Here, we show that a fluorescent sensor attached to a cell membrane can detect signalling molecules(More)
Mesenchymal stem cells (MSCs) are promising candidates for cell-based therapy to treat several diseases and are compelling to consider as vehicles for delivery of biological agents. However, MSCs appear to act through a seemingly limited "hit-and-run" mode to quickly exert their therapeutic impact, mediated by several mechanisms, including a potent(More)
DNA sensors and microarrays permit fast, simple, and real-time detection of nucleic acids through the design and use of increasingly sensitive, selective, and robust molecular probes. Specifically, molecular beacons (MBs) have been employed for this purpose; however, their potential in the development of solid-surface-based biosensors has not been fully(More)
We report an aptamer-nanoparticle strip biosensor (ANSB) for the rapid, specific, sensitive, and low-cost detection of circulating cancer cells. Known for their high specificity and affinity, aptamers were first selected from live cells by the cell-SELEX (systematic evolution of ligands by exponential enrichment) process. When next combined with the unique(More)