Joseph A. Izatt

Learn More
BACKGROUND/PURPOSE To assess the potential of a new diagnostic technique called optical coherence tomography for imaging macular disease. Optical coherence tomography is a novel noninvasive, noncontact imaging modality which produces high depth resolution (10 microns) cross-sectional tomographs of ocular tissue. It is analogous to ultrasound, except that(More)
Drosophila melanogaster genetics provides the advantage of molecularly defined P-element insertions and deletions that span the entire genome. Although Drosophila has been extensively used as a model system to study heart development, it has not been used to dissect the genetics of adult human heart disease because of an inability to phenotype the adult fly(More)
Segmentation of anatomical and pathological structures in ophthalmic images is crucial for the diagnosis and study of ocular diseases. However, manual segmentation is often a time-consuming and subjective process. This paper presents an automatic approach for segmenting retinal layers in Spectral Domain Optical Coherence Tomography images using graph theory(More)
OBJECTIVE To demonstrate optical coherence tomography for high-resolution, noninvasive imaging of the human retina. Optical coherence tomography is a new imaging technique analogous to ultrasound B scan that can provide cross-sectional images of the retina with micrometer-scale resolution. DESIGN Survey optical coherence tomographic examination of the(More)
We present theoretical and experimental results which demonstrate the superior sensitivity of swept source (SS) and Fourier domain (FD) optical coherence tomography (OCT) techniques over the conventional time domain (TD) approach. We show that SS- and FD-OCT have equivalent expressions for system signal-to-noise ratio which result in a typical sensitivity(More)
BACKGROUND Optical coherence tomography (OCT) is an recently developed medical diagnostic technology that uses back-reflected infrared light to perform in situ micron scale tomographic imaging. In this work, we investigate the ability of OCT to perform micron scale tomographic imaging of the internal microstructure of in vitro atherosclerotic plaques. (More)
PURPOSE Quantitative assessment of nerve fiber layer (NFL) thickness in normal and glaucomatous eyes, and correlation with conventional measurements of the optic nerve structure and function. METHODS We studied 59 eyes of 33 subjects by conventional ophthalmologic physical examination, Humphrey 24-2 visual fields, stereoscopic optic nerve head(More)
OBJECTIVE To demonstrate a new diagnostic technique, optical coherence tomography, for high-resolution cross-sectional imaging of structures in the anterior segment of the human eye in vivo. Optical coherence tomography is a new, noninvasive, noncontact optical imaging modality that has spatial resolution superior to that of conventional clinical(More)
PURPOSE To determine the dynamic morphologic development of the human fovea in vivo using portable spectral domain-optical coherence tomography (SD-OCT). DESIGN Prospective, observational case series. PARTICIPANTS Thirty-one prematurely born neonates, 9 children, and 9 adults. METHODS Sixty-two neonates were enrolled in this study. After examination(More)