Learn More
Analysis of the 2.4-A resolution crystal structure of the large ribosomal subunit from Haloarcula marismortui reveals the existence of an abundant and ubiquitous structural motif that stabilizes RNA tertiary and quaternary structures. This motif is termed the A-minor motif, because it involves the insertion of the smooth, minor groove edges of adenines into(More)
Crystal structures of the Haloarcula marismortui large ribosomal subunit complexed with the 16-membered macrolide antibiotics carbomycin A, spiramycin, and tylosin and a 15-membered macrolide, azithromycin, show that they bind in the polypeptide exit tunnel adjacent to the peptidyl transferase center. Their location suggests that they inhibit protein(More)
The crystal structure of an HIV-1 trans-activation response region (TAR) RNA fragment containing the binding site for the trans-activation protein Tat has been determined to 1.3-A resolution. In this crystal structure, the characteristic UCU bulge of TAR adopts a conformation that is stabilized by three divalent calcium ions and differs from those(More)
The Klebsiella aerogenes ureE gene product was previously shown to facilitate assembly of the urease metallocenter (Lee, M.H., et al., 1992, J. Bacteriol. 174, 4324-4330). UreE protein has now been purified and characterized. Although it behaves as a soluble protein, UreE is predicted to possess an amphipathic beta-strand and exhibits unusually tight(More)
Fifty high resolution protein structures from the Brookhaven Protein Data Bank have been analyzed for recurring motifs in hydrogen bond stereochemistry. Although an exhaustive analysis of hydrogen bond statistics has been presented by Baker & Hubbard, a detailed stereochemical analysis of classical donor (N-H, O-H, or S-H) and acceptor (N:, O:, or S:)(More)
Amino acid substitutions at Thr199 of human carbonic anhydrase II (CAII) (Thr199-->Ser, Ala, Val, and Pro) were characterized to investigate the importance of a conserved hydrogen bonding network. The three-dimensional structures of azide-bound and sulfate-bound T199V CAIIs were determined by x-ray crystallographic methods at 2.25 and 2.4 A, respectively(More)
This study evaluated the effect of local zinc chloride (ZnCl2 ), an insulin mimetic agent, upon the early and late parameters of fracture healing in rats using a standard femur fracture model. Mechanical testing, radiographic scoring, histomorphometry, qualitative histological scoring, PCNA immunohistochemistry, and local growth factor analysis were(More)
New and improved antibiotics are urgently needed to combat the ever-increasing number of multidrug-resistant bacteria. In this study, we characterized several members of a new oxazolidinone family, R chi-01. This antibiotic family is distinguished by having in vitro and in vivo activity against hospital-acquired, as well as community-acquired, pathogens. We(More)
The oxazolidinone antibacterials target the 50S subunit of prokaryotic ribosomes. To gain insight into their mechanism of action, the crystal structure of the canonical oxazolidinone, linezolid, has been determined bound to the Haloarcula marismortui 50S subunit. Linezolid binds the 50S A-site, near the catalytic center, which suggests that inhibition(More)
The crystal structure of a 28 nt RNA fragment containing the human immunodeficiency virus type 1 (HIV-1) Rev response element high affinity binding site for Rev protein has been solved at 1.6 A resolution. The overall structure of the RRE helix is greatly distorted from A-form geometry by the presence of two purine-purine base-pairs and two single(More)