Learn More
A fundamental characteristic of working memory is that its capacity to handle information is limited. While there have been many brain mapping studies of working memory, the physiological basis of its capacity limitation has not been explained. We identified characteristics of working memory capacity using functional magnetic resonance imaging (fMRI) in(More)
Low frequency drift (0.0-0.015 Hz) has often been reported in time series fMRI data. This drift has often been attributed to physiological noise or subject motion, but no studies have been done to test this assumption. Time series T*2-weighted volumes were acquired on two clinical 1.5 T MRI systems using spiral and EPI readout gradients from cadavers, a(More)
Functional magnetic resonance imaging (fMRI) is a tool for mapping brain function that utilizes neuronal activity-induced changes in blood oxygenation. An efficient three-dimensional fMRI method is presented for imaging brain activity on conventional, widely available, 1.5-T scanners, without additional hardware. This approach uses large magnetic(More)
Functional magnetic resonance imaging (fMRI) is a potential paradigm shift in psychiatric neuroimaging. The technique provides individual, rather than group-averaged, functional neuroimaging data, but subtle methodological confounds represent unique challenges for psychiatric research. As an exemplar of the unique potential and problems of fMRI, we present(More)
A method is presented for multislice measurements of quantitative cerebral perfusion based on magnetic labeling of arterial spins. The method combines a pulsed arterial inversion, known as the FAIR (Flow-sensitive Alternating Inversion Recovery) experiment, with a fast spiral scan image acquisition. The short duration (22 ms) of the spiral data collection(More)
The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRI's) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of(More)
In order to investigate the merit of high field strength for BOLD-contrast-based functional magnetic resonance imaging (fMRI) studies, multishot gradient-echo fMRI experiments during motor cortex activation were performed on 1.5- and 4.0-T scanners with equivalent hardware, on the same volunteers. In these studies, artifactual vascular enhancement related(More)
The mammalian central nervous system has a tremendous structural complexity, and diffusion tensor imaging (DTI) is unique in its ability to extract microstructural tissue properties at a macroscopic scale. However, despite its widespread use and applications in clinical and research settings, accurate validation of DTI has notoriously lagged the advances in(More)
Monoaminergic neurotransmitters are known to have modulatory effects on cognition and on neurophysiological function in the cortex. The current study was performed with BOLD fMRI to examine physiological correlates of the effects of dextroamphetamine on working-memory performance in healthy controls. In a group analysis dextroamphetamine increased BOLD(More)
MRI methods are widely used to follow the pathological evolution of multiple sclerosis in life and its modification by treatment. To date, measures of the number and volume of macroscopically visible lesions have been studied most often. These MRI outcomes have demonstrated clear treatment effects but without a commensurate clinical benefit, suggesting that(More)