Learn More
Although the neurobiology of autism has been studied for more than two decades, the majority of these studies have examined brain structure 10, 20, or more years after the onset of clinical symptoms. The pathological biology that causes autism remains unknown, but its signature is likely to be most evident during the first years of life when clinical(More)
Osteoarthritis is the most common form of arthritis, affecting millions of people in the United States. It is a complex disease whose etiology bridges biomechanics and biochemistry. Evidence is growing for the role of systemic factors (such as genetics, dietary intake, estrogen use, and bone density) and of local biomechanical factors (such as muscle(More)
The unique biologic and mechanical properties of articular cartilage depend on the design of the tissue and the interactions between the chondrocytes and the matrix that maintain the tissue. Chondrocytes form the macromolecular framework of the tissue matrix from three classes of molecules: collagens, proteoglycans, and noncollagenous proteins. Type II, IX,(More)
We measured the in situ biomechanical properties of knee joint cartilage from five species (bovine, canine, human, monkey, and rabbit) to examine the biomechanical relevance of animal models of human knee joint injuries and osteoarthritis. In situ biphasic creep indentation experiments were performed to simultaneously determine all three intrinsic material(More)
Sedimentation coefficients of approximately 150 S show that proteoglycan aggregates from bovine fetal epiphyseal cartilage are exceptionally large. To determine the structural basis for the unusually large size of these proteoglycan aggregates, identify changes in proteoglycan structure with changing developmental age, and provide a basis for demonstrating(More)
Few morphological differences have been identified so far that distinguish the human brain from the brains of our closest relatives, the apes. Comparative analyses of the spatial organization of cortical neurons, including minicolumns, can aid our understanding of the functionally relevant aspects of microcircuitry. We measured horizontal spacing distance(More)
The acute and repetitive impact and torsional joint loading that occurs during participation in sports can damage articular surfaces causing pain, joint dysfunction, and effusions. In some instances, this articular surface damage leads to progressive joint degeneration. Three classes of chondral and osteochondral injuries can be identified based on the type(More)
Articular cartilage, which makes possible the painless, low-friction movement of synovial joints, consists of a sparsely distributed population of highly specialized cells called chondrocytes that are embedded within a matrix and provide articular cartilage with remarkable mechanical properties. Chondrocytes form the tissue matrix macromolecular framework(More)