Josep Perello

Learn More
Financial time series exhibit two different type of non linear correlations: (i) volatility autocorrela-tions that have a very long range memory, on the order of years, and (ii) asymmetric return-volatility (or 'leverage') correlations that are much shorter ranged. Different stochastic volatility models have been proposed in the past to account for both(More)
We adapt continuous time random walk (CTRW) formalism to describe asset price evolution and discuss some of the problems that can be treated using this approach. We basically focus on two aspects: (i) the derivation of the price distribution from high-frequency data, and (ii) the inverse problem, obtaining information on the market microstructure as(More)
We study the exponential Ornstein-Uhlenbeck stochastic volatility model and observe that the model shows a multiscale behavior in the volatility autocorrelation. It also exhibits a leverage correlation and a probability profile for the stationary volatility which are consistent with market observations. All these features make the model quite appealing(More)
While human societies are extraordinarily cooperative in comparison with other social species, the question of why we cooperate with unrelated individuals remains open. Here we report results of a lab-in-the-field experiment with people of different ages in a social dilemma. We find that the average amount of cooperativeness is independent of age except for(More)
We study financial distributions within the framework of the continuous time random walk (CTRW). We review earlier approaches and present new results related to overnight effects as well as the generalization of the formalism which embodies a non-Markovian formulation of the CTRW aimed to account for correlated increments of the return.
We study theoretical and empirical aspects of the mean exit time (MET) of financial time series. The theoretical modeling is done within the framework of continuous time random walk. We empirically verify that the mean exit time follows a quadratic scaling law and it has associated a prefactor which is specific to the analyzed stock. We perform a series of(More)
The electricity market is a very peculiar market due to the large variety of phenomena that can affect the spot price. However, this market still shows many typical features of other speculative (commodity) markets like, for instance, data clustering and mean reversion. We apply the diffusion entropy analysis (DEA) to the Nordic spot electricity market(More)
We prove that Brownian market models with random diffusion coefficients provide an exact measure of the leverage effect [J-P. Bouchaud et al., Phys. Rev. Lett. 87, 228701 (2001)]. This empirical fact asserts that past returns are anticorrelated with future diffusion coefficient. Several models with random diffusion have been suggested but without a(More)
We study the pricing problem for a European call option when the volatility of the underlying asset is random and follows the exponential Ornstein-Uhlenbeck model. The random diffusion model proposed is a two-dimensional market process that takes a log-Brownian motion to describe price dynamics and an Ornstein-Uhlenbeck subordinated process describing the(More)