Josep Mouriño

Learn More
Brain activity recorded noninvasively is sufficient to control a mobile robot if advanced robotics is used in combination with asynchronous electroencephalogram (EEG) analysis and machine learning techniques. Until now brain-actuated control has mainly relied on implanted electrodes, since EEG-based systems have been considered too slow for controlling(More)
In this communication, we give an overview of our work on an asynchronous brain-computer interface (where the subject makes self-paced decisions on when to switch from one mental task to the next) that responds every 0.5 s. A local neural classifier tries to recognize three different mental tasks; it may also respond "unknown" for uncertain samples as the(More)
This paper proposes a novel and simple local neural classifier for the recognition of mental tasks from on-line spontaneous EEG signals. The proposed neural classifier recognizes three mental tasks from on-line spontaneous EEG signals. Correct recognition is around 70%. This modest rate is largely compensated by two properties, namely low percentage of(More)
 There is a growing interest in the use of physiological signals for communication and operation of devices for the severely motor disabled as well as for healthy people. A few groups around the world have developed brain-computer interfaces (BCIs) that rely upon the recognition of motor-related tasks (i.e., imagination of movements) from on-line EEG(More)
Over the last years evidence has accumulated that shows the possibility to analyze human brain activity on-line and translate brain states into actions such as selecting a letter from a virtual keyboard or moving a robotics device. These initial results have been obtained with either invasive approaches (requiring surgical implantation of electrodes) or(More)
Electroencephalograph (EEG)-based brain-computer interfaces (BCI's) require on-line detection of mental states from spontaneous EEG signals. In this framework, surface Laplacian (SL) transformation of EEG signals has proved to improve the recognition scores of imagined motor activity. The results we obtained in the first year of an European project named(More)
We review and extend earlier work on the logic CFD, a description logic that allows terminological cycles with universal restrictions over functional roles. In particular, we consider the problem of reasoning about concept subsumption and the problem of computing certain answers for a family of attribute-connected conjunctive queries, showing that both(More)
EEG-based Brain Computer Interfaces (BCIs) require on-line detection of mental states from spontaneous EEG signals. In this framework, it was suggested that EEG patterns can be better detected with EEG data transformed with Surface Laplacian computation (SL) than with the unprocessed raw potentials. However, accurate SL estimates require the use of many EEG(More)