Josep Maria Huguet

Learn More
Accurate knowledge of the thermodynamic properties of nucleic acids is crucial to predicting their structure and stability. To date most measurements of base-pair free energies in DNA are obtained in thermal denaturation experiments, which depend on several assumptions. Here we report measurements of the DNA base-pair free energies based on a simplified(More)
We investigate unfolding/folding force kinetics in DNA hairpins exhibiting two and three states with newly designed short dsDNA handles (29 bp) using optical tweezers. We show how the higher stiffness of the molecular setup moderately enhances the signal/noise ratio (SNR) in hopping experiments as compared to conventional long-handled constructs (≅700 bp).(More)
We investigate the thermodynamics and kinetics of DNA hairpins that fold/unfold under the action of applied mechanical force. We introduce the concept of the molecular free energy landscape and derive simplified expressions for the force dependent Kramers–Bell rates. To test the theory we have designed a specific DNA hairpin sequence that shows two-state(More)
We unzip DNA molecules using optical tweezers and determine the sizes of the cooperatively unzipping and zipping regions separating consecutive metastable intermediates along the unzipping pathway. Sizes are found to be distributed following a power law, ranging from one base pair up to more than a hundred base pairs. We find that a large fraction of(More)
A main goal of single-molecule experiments is to evaluate equilibrium free energy differences by applying fluctuation relations to repeated work measurements along irreversible processes. We quantify the error that is made in a free energy estimate by means of the Jarzynski equality when the accumulated work expended on the whole system (including the(More)
We investigate irreversibility and dissipation in single molecules that cooperatively fold/unfold in a two-state manner under the action of mechanical force. We apply path thermodynamics to derive analytical expressions for the average dissipated work and the average hopping number in two-state systems. It is shown how these quantities only depend on two(More)
We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the(More)
Keywords: Single-molecule experiments Thermodynamics of small systems a b s t r a c t We present two examples of how single-molecule experimental techniques applied to biological systems can give insight into problems within the scope of equilibrium and nonequilibrium mesoscopic thermodynamics. The first example is the mapping of the free energy landscape(More)
Stochastic resonance (SR) is a well known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively folding/unfolding transitions under the action of an applied oscillating(More)
We perform a numerical study of the three-dimensional random-field Ising model at T=0. We compare work distributions along metastable trajectories obtained with the single-spin flip dynamics with the distribution of the internal energy change along equilibrium trajectories. The goal is to investigate the possibility of extending the Crooks fluctuation(More)
  • 1