Learn More
The combination of self-setting and biocompatibility makes calcium phosphate cements potentially useful materials for a variety of dental applications. The objective of this study was to investigate the setting and hardening mechanisms of a cement-type reaction leading to the formation of calcium-deficient hydroxyapatite at low temperature. Reactants used(More)
Numerous experimental studies have attempted to determine the optimal properties for a scaffold for use in bone tissue engineering but, as yet, no computational or theoretical approach has been developed that suggests how best to combine the various design parameters, e.g. scaffold porosity, Young's modulus, and dissolution rate. Previous research has shown(More)
Mechanical stimuli are one of the factors that affect cell proliferation and differentiation in the process of bone tissue regeneration. Knowledge on the specific deformation sensed by cells at a microscopic level when mechanical loads are applied is still missing in the development of biomaterials for bone tissue engineering. The objective of this study(More)
In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to(More)
The injectability of four calcium phosphate bone cements (CPBCs) was measured using a commercial disposable syringe. It varied considerably with the cement powder composition, with the liquid/powder ratio, with the time after starting the mixing of liquid and powder, with the accelerator concentration (% Na2HPO4), and with the ageing time of the cement(More)
Radial glia cells (RGC) are multipotent progenitors that generate neurons and glia during CNS development, and which also served as substrate for neuronal migration. After a lesion, reactive glia are the main contributor to CNS regenerative blockage, although some reactive astrocytes are also able to de-differentiate in situ into radial glia-like cells(More)
Despite their known osteoconductivity, clinical use of calcium phosphate cements is limited both by their relatively slow rate of resorption and by rheological properties incompatible with injectability. Bone in-growth and material resorption have been improved by the development of porous calcium phosphate cements. However, injectable formulations have so(More)
The effect that three different radiopacifying agents, two of them inorganic (BaSO4, ZrO2) and one organic (an iodine containing monomer, IHQM) have on the static and dynamic mechanical properties of acrylic bone cements was studied. Compressive and tensile strength, fracture toughness and fatigue crack propagation were evaluated. The effect of the(More)
STUDY DESIGN A new type of composite device with a similar structure to a natural lumbar intervertebral disc was modeled, and its mechanical interaction with a L3-L5 lumbar spine segment was studied by a finite element analysis. OBJECTIVE To identify the influence of the prosthesis on the biomechanical changes induced in a L3-L4 lumbar spine segment model(More)
Recent studies have pointed towards a decisive role of inflammation in triggering tissue repair and regeneration, while at the same time it is accepted that an exacerbated inflammatory response may lead to rejection of an implant. Within this context, understanding and having the capacity to regulate the inflammatory response elicited by 3-D scaffolds aimed(More)