Josefin Backman

Learn More
Acrylamide (AA) is produced in many types of food products cooked or processed at high temperature. AA is metabolized to the epoxide glycidamide (GA), which can bind to deoxyguanosine and deoxyadenosine in DNA. The GA-derived N7-guanine and N3-adenine adducts are the only products which so far have been analysed in vivo. Because of previous excellent(More)
Glyoxal (ethanedial) is an increasingly used industrial chemical that has been found to be mutagenic in bacteria and mammalian cells. In this study, the reactions of glyoxal with 2'-deoxyguanosine, 2'-deoxyadenosine, 2'-deoxycytidine, cytidine, thymidine, and calf thymus DNA have been studied in aqueous buffered solutions. The nucleoside adducts were(More)
2'-Deoxyadenosine (dA) and 2'-deoxyguanosine (dG) were reacted with mutagenic epoxide glycidamide (GA, Scheme 1). The reactions yielded three GA-dA adducts (N1-GA-dA, N6-GA-dA and N1-GA-dI) and two GA-dG adducts (N1-GA-dG I and N1-GA-dG II) (Scheme 2). The structures of the adducts were characterized by spectroscopic and spectrometric methods (1H-, 13C, and(More)
Glycidamide (GA) is a mutagenic epoxide metabolite of acrylamide (AM), a high production chemical with many industrial uses. Moreover, recent findings have shown that AM is formed in starchy foods cooked at high temperatures. This has refocused the attention on this chemical and its metabolite and on their possible mutagenicity and carcinogenicity. In this(More)
Glutaraldehyde (1,5-pentanedial) is a widely used industrial chemical that has been found to be mutagenic in bacteria and mammalian cells. In this study, we examined the reaction of glutaraldehyde with 2'-deoxyadenosine and calf thymus DNA in aqueous buffered solutions. The 2'-deoxyadenosine adducts were isolated by reversed phase HPLC and characterized by(More)
Malonaldehyde was reacted with adenosine in aqueous solution at acidic conditions and the reaction mixtures were analysed by HPLC. Four major product peaks were observed in the chromatogram recorded by the UV detector at 320 nm. Two of the peaks could be deduced to the previously characterised malonaldehyde-adenosine reaction product(More)
  • 1